Olimpiada Mexicana de Matemáticas en Internet Olimpiada Mexicana de Matemáticas en Internet Olimpiada Mexicana de Matemáticas en Internet
Olimpiada Mexicana de Matemáticas en Internet Olimpiada Mexicana de Matemáticas en Internet Olimpiada Mexicana de Matemáticas en Internet
Olimpiada Mexicana de Matemáticas en Internet

Aviso importante
Nueva Página Oficial de la Olimpiada Mexicana de Matemáticas

Soluciones




Solución 26.
Trazando las diagonales del rectángulo encontramos 12 triángulos. Cada lado del rectángulo contiene la base de 3 triángulos, uno blanco y uno gris, de la misma área, pues sus bases y sus alturas son iguales. Así, la razón de las áreas es de 1 a 2. La respuesta es (b).

Regresar al problema




Solución 27.
El número 1092 se escribe como un 1 seguido de 92 ceros. Entonces 1092-92 se escribe como noventa 9's seguidos de un 0 y un 8. Tenemos que 9 x 90 + 0 + 8 = 818. La respuesta es (c).

Regresar al problema




Solución 28.
Escribí 5 cien veces como cifra de las unidades: 5, 15, 25, ..., 95, ..., 995. Escribí 5 cien veces como cifra de las decenas: 50, ...,59, 150, ..., 159, ..., 950, ..., 959. Escribí 5 cien veces como cifra de las centenas: 500, 501, ..., 599. En total escribí 300 veces la cifra 5. La respuesta es (e).

Regresar al problema




Solución 29.
Por ser el número múltiplo de 5, debe terminar en 0 o 5, pero como no debe tener 0's, el número termina en 5. Ahora hay que buscar tres números cuya suma sea 4 (pues la suma de todas las cifras del número es 9); como ninguno debe ser cero la única posibilidad es que sean 1,1,2 y, como el número debe ser mayor que 1995, debe ser 2115. Por lo tanto su tercera cifra es 1. La respuesta es (a).

Regresar al problema




Solución 30.
El segmento MS es la diagonal de un rectángulo, por lo cual los 2 triángulos que lo tienen como lado son de la misma área. Lo mismo pasa con MQ y con QS, lo cual implica que las áreas de los rectángulos grises siempre son iguales. La respuesta es (c).

Regresar al problema




Solución 31.
Por ser el número múltiplo de 5, debe terminar en 0 o 5, pero como no debe tener 0's, el número termina en 5. Ahora hay que buscar tres números cuya suma sea 4 (pues la suma de todas las cifras del número es 9); como ninguno debe ser cero la única posibilidad es que sean 1,1,2 y, como el número debe ser mayor que 1995, debe ser 2115. Por lo tanto su tercera cifra es 1. La respuesta es (a).

Regresar al problema




Solución 32.
Hay 6 formas de ir de la ciudad A a la ciudad D pasando por B, y hay 10 formas pasando por C. Por lo tanto hay 16 rutas de la ciudad A a D. La respuesta es (b).

Regresar al problema




Solución 33.
Tenemos tres direcciones que pueden seguir las líneas de alambre, las cuales podríamos pensar como: de izquierda a derecha, de adelante a atrás y de arriba a abajo. En cada una de estas direcciones hay 16 líneas de 3 cm cada una pues son 4 niveles y en cada nivel hay 4 líneas. De esta manera tenemos que el resultado es 3 x 3 x 16 = 144. La respuesta es (e).

Regresar al problema




Solución 34.
Llamemos a y b a los catetos del triángulo y c a su hipotenusa. Sabemos que c = 6 y que a+b+c=14. Por lo tanto a+b=8. Elevando al cuadrado tenemos que (a+b)2=82, lo cual implica que a2+2ab+b2=64. El área que buscamos es ab/2. Por el Teorema de Pitágoras c2+2ab=64, sustituyendo c obtenemos que ab/2=7, que es el área que buscábamos. La respuesta es (b).

Regresar al problema




Solución 35.
La cantidad de días que pasan antes de que vuelvan a reunirse todos debe ser divisible por 1, 2, 3, 4, 5, 6 y 7. Si multiplicamos 4 x 3 x 5 x 7=420 tenemos el mínimo común múltiplo los números, así, el menor número de días en el que se reencontrarán es 420. La respuesta es (d).

Regresar al problema




Solución 36.
El área del círculo es x (/2)2=/2. El área de la superficie delimitada por los segmentos AD, DC y el arco AC es 1 - /4. El área de la región delimitada por el segmento BC y el arco BC es la cuarta parte de restarle al área del círculo el área del cuadrado, o sea (/2 - 1)/4 =1 - /8 - 1/4}. Así, el área de la región sombreada es 2(/8 - 1/4 + 1 - /4)=1/2. La respuesta es (c).

Regresar al problema




Solución 37.
Uno de los enteros, digamos a, debe ser par, mientras que el otro, b, debe ser impar. Como 43 = 64 > 57, tenemos que a = 2; entonces es fácil ver que b=5. La respuesta es (b).

Regresar al problema




Solución 38.
El triángulo ABC es isósceles (AB = AC), lo que implica que ABC = ACB = 75o, y que BAC = 180o-(75o+75o) = 30o. El triángulo ADC es isósceles (AD=DC), lo que implica que DAC = DCA = (180o-50o)/2 = 65o. Observemos que BAD = CAB + DAC = 30o+65o=95o. La respuesta es (d).

Regresar al problema




Solución 39.
En la figura, el área del triángulo ABC es igual a la del triángulo FGH, y el área del triángulo ACD es igual a la del EIJ. Así, el área sombreada es igual al área del cuadrado EFHI, que es 9. Entonces la respuesta es (a).

Regresar al problema


Solución 40.
Si el promedio de los cinco números es 40, entonces su suma es 40 x 5=200. De la misma manera, la suma de los tres que no se eliminaron es 108. Entonces, los dos eliminados suman 92 y su promedio es 46. La respuesta es (d).

Regresar al problema




Solución 41.
Tenemos que CANGUROS = 10,000 x CANG + UROS, así es que

10,000 x UROS- 10,000 x CANG+ 10,000 x CANG+ UROS=10,000 x UROS+ UROS= UROSUROS.

La respuesta es (a).

Regresar al problema




Solución 42.
El ángulo A'BC mide 180o - 2(72o)=36o. Por lo tanto, la región sombreada es 360o/36o=1/10 del área total del círculo con centro en B y radio AB, que es (12)=/pi. El área de la región sombreada es igual a /10}. La respuesta es (c).

Regresar al problema




Solución 43.
Queremos que el número sea múltiplo de 6, por tanto debe serlo de 2 y de 3. Al pedir que la suma de sus cifras sea 21 el número ya será múltiplo de 3. El número deberá además par, así es que pensemos en las posibilidades para su última cifra. El número no puede terminar en 0 ni 2 porque no tenemos posibilidades para las primeras dos cifras de forma que la suma alcance 21. Si la última cifra es 4, las dos primeras deben sumar 17, así es que deben ser 8 y 9, y hay dos combinaciones posibles: 984 y 894. Si la última cifra es 6, las primeras pueden ser 8 y 7, o bien 9 y 6, con los que se pueden formar cuatro números: 876, 786, 966 y 696. Si la última cifra es 8, las posibilidades para las primeras son 6 y 7, 5 y 8, o bien 4 y 9; y hay 6 números: 768, 678, 588, 858, 498, 948. En total hay 12 números. La respuesta es (c).

Regresar al problema




Solución 44.
x2/2 es par siempre. Como x es par, entonces x es múltiplo de 2 y, por lo tanto, x2 es múltiplo de 4. Entonces x2/2 es múltiplo de 2, es decir, es par. La respuesta es (c) .

Regresar al problema




Solución 45.
Observemos que 343=73. Como los números son de cuatro cifras, 3 de ellas son 7 y la otra es 1. Entonces las únicas posibilidades son 7177, 7717, 7771. La respuesta es (c).

Regresar al problema




Solución 46.
El área del círculo es (12)=, así que estamos buscando la altura de un triángulo equilátero que tiene área . AB'C' es un triángulo equilátero, aplicando el Teorema de Pitágoras al triángulo rectángulo que tiene como hipotenusa a AC' y como catetos a la altura trazada desde el vértice A y a la mitad del lado B'C'. Si AC' mide b y la altura es h, tenemos que h2=b2-(b/2)2=(3/4)b2, de donde b=(2/)h. El área del triángulo es hb/2. Así, (1/)h2= y h=. La respuesta es (a).

Regresar al problema




Solución 47.
Aplicando el Teorema de Pitágoras al triángulo cuya hipotenusa es el radio de la esfera y uno de cuyos lados es el radio del agujero, vemos que la distancia desde el centro de la esfera hasta el nivel de la mesa es =8. Así, la distancia del punto más alto de la esfera al piso es 10+8+30=48. La respuesta es (d).

Regresar al problema




Solución 48.
Si la fecha menor del cuadrado es x, la suma de todas las fechas del cuadrado es

x + x + 1 + x + 2 + x + 7 + x + 8 + x + 9 + x + 14 + x + 15 + x + 16 = 9x + 72 = 9x + 7x(10) + 2.

Necesitamos que 9x termine en 8, lo cual es posible si x termina en 2. Para que x sea múltiplo de 4 la única posibilidad es x=12. Entonces, la fecha de la esquina inferior derecha es 28. La respuesta es (e).

Regresar al problema




Solución 49.
Como sabemos cuánto vale f(2), podríamos calcular f(11) si conociéramos el valor de f(3) ya que 11 = 4+4+3 = (2+2)+(2+2)+3. Tenemos que f(4) = f(2+2) = f(2) + f(2) + 4 = 10. Por otra parte f(4) = 10 = f(3) + f(1) + 3, de donde f(3) = 7-f(1). Además f(3)=f(2+1)=f(2)+f(1)+2=f(1)+5. Tenemos dos ecuaciones que involucran a f(3) y a f(1). Resolviendo obtenemos f(1)=1 y f(3)=6. Entonces f(11) = f(4+7) = f(4) + f(4+3) + 28 = 10 + f(4) + f(3) + 12 + 28 = 50 + 10 + 6 = 66. La respuesta es (e).

Regresar al problema




Solución 50.
En (1+12)+(2+22)+(3+32)+ ... +(2001+20012) podemos reemplazar cada número por su última cifra sin alterar la última cifra del resultado. Asi, la última cifra de la suma es la misma que la última cifra de 200 x ((1+12) + (2+22) + (3+32) + ... + (10+102)) + (1+12) = 88002. Por lo tanto, la cifra que buscábamos es 2. La respuesta es (b).

Regresar al problema



Inicio de la página