1. Routine questions

1. Verify that G-Set is a symmetric monoidal category \mathbb{S} with product \diamond, such that finite colimits exist and commute with $-\diamond X$ for all objects X in \mathbb{S}.
2. Is it obvious that indecomposable sets for $\mathcal{A}_{n}=x_{1}<x_{2}<\cdots<$ x_{n} biject with rooted trees? Is it obvious that indecomposable sets for the Kronecker quiver with two objects x, y and two morphisms $x \rightarrow y$ biject with directed graphs?
3.True or False?: the identity element of $B(\mathcal{C})$ is a representable set if and only if \mathcal{C} has an initial object.
3. Is it obvious that

$$
B(\mathcal{C})=\mathbb{Z}\left\{\Omega_{0}, \Omega_{1}, \Omega_{2}, \ldots\right\} \cong \mathbb{Z} \mathbb{N}_{\geq 0}^{\times}
$$

is not a finitely generated ring? How many idempotents does it have? Is it obvious that it is not semisimple? Is B_{FI} semisimple?
5. Do you remember the axioms for a symmetric monoidal category?

6 . Let $[n]$ be the discrete category with n objects and only the identity morphisms. Calculate $B([n])$. Is it finite or infinite dimensional. Is it semisimple?
7. Show that if the category \mathcal{C} is a group then self-equivalences of \mathcal{C} are the same thing as automorphisms of the group, and that two such self-equivalences are naturally isomorphic if and only if the automorphisms differ by an inner automorphism.

2. More challenging questions

8. Is it true that $\mathrm{FI}=$ finite sets with monomorphisms has finite colimits, commuting with direct product? What about finite sets with epimorphisms?
9. Let $S S$ be a category satisfying conditions in the notes, that might replace the category Set of finite sets. Show that there is a functor Set $\rightarrow \mathbb{S}$ taking a set with n elements to the coproduct of n copies of $\mathbf{1}$. What needs to be shown to verify this. Show that this means that linear functors on the category of bi-objects in \mathbb{S} can be regarded as biset functors.
10. Find categories \mathcal{U}, \mathcal{V} so that not all $(\mathcal{U}, \mathcal{V})$-bisets can be factored as a product of basic bisets $\mathcal{C}^{F} \mathcal{E}_{G_{\mathcal{D}}}$ with $\mathcal{C}, \mathcal{D}, \mathcal{E}$ all smaller than the largest of \mathcal{U}, \mathcal{V}.
11. Do you know what the idempotent completion of a category is? Do you know different names for it. Have you any idea how to prove: If the idempotent completions of \mathcal{C} and \mathcal{D} are equivalent then \mathcal{C} and \mathcal{D}
are isomorphic in the biset category \mathbb{B}_{R} ? (There is a proof in 7.9.4 of volume I of Borceux's book, but you might want to guess a proof.)
12. Find the size matrices of all the indecomposable bisets in $\operatorname{End}_{\mathbb{B}}\left(\mathcal{A}_{2}, \mathcal{A}_{2}\right)$ such that all the morphisms in $\mathcal{A}_{2} \times \mathcal{A}_{2}^{\mathrm{op}}$ act by monomorphisms. (Do you see what this means?) How many such bisets are there. Compute a multiplication table for these bisets, showing that the product of any two of these bisets is another one. More difficult: show that (when R is a field) this endomorphism ring is semisimple by finding central idempotents, and then a basis for the ring such that the multiplication is the same as that of matrices with only one non-zero entry, which is 1.

3. Questions to which I do not know the answer

13. Is it true that if \mathcal{C} and \mathcal{D} are isomorphic in the biset category then their idempotent completions are equivalent? This is true in the distributor 2-category, and there is a proof in the book by Borceux.

4. Research questions

14. What does $\operatorname{End}_{\mathbb{B}}(\mathcal{C})$ look like for various categories \mathcal{C} that we might be interested in? For example, \mathcal{C} might be one of the posets \mathcal{A}_{n} (a chain of length n), or different quivers of type \mathcal{A}_{n} with other orientations, or the poset of subsets of a set of size n, or some other poset. Do these rings satisfy the Krull-Schmidt theory over a field. What are their units? These units contain Out \mathcal{C}, but what else? In other words, what do the invertible linear combinations of bisets look like? Is the span of non-invertible bisets an ideal in $\operatorname{End}_{\mathbb{B}}(\mathcal{C})$, with quotient R Out \mathcal{C} ?
15. Do biset functors, perhaps restricted to a favorable clase of categories, admit filtrations that in characteristic zero give them the structure of a highest weight category, or something of this kind?
