Biset functors for categories

Peter Webb

University of Minnesota

UNAM Morelia, June 2023

Outline:

This material is taken from arXiv:2304.06863

Unit 5: Monoidal structures; fibered biset functors

Monoidal structure on the biset category \mathbb{B}

Internal tensor product: the direct product of categories $\mathcal{C} \times \mathcal{D}$ Unit: the category $\mathbf{1}$

Contravariant equivalence: $\tau: \mathbb{B} \rightarrow \mathbb{B}$ given by $\tau(\mathcal{C})=\mathcal{C}^{\text {op }}$.
A $(\mathcal{C}, \mathcal{D})$-biset ${ }_{\mathcal{C}} \Omega_{\mathcal{D}}$ is the same thing as a $\mathcal{C} \times \mathcal{D}^{\text {op }}$-set, also a $\mathcal{D}^{\mathrm{op}} \times\left(\mathcal{C}^{\mathrm{op}}\right)^{\mathrm{op}}$-set. This gives $\mathcal{C} \Omega_{\mathcal{D}}$ the structure of a ($\mathcal{D}^{\mathrm{op}}, \mathcal{C}^{\mathrm{op}}$)-biset ${ }_{\mathcal{D}}^{\mathrm{op}} \Omega_{\mathcal{C}}{ }^{\mathrm{op}}$.

Dual objects

For each category \mathcal{K} the $(\mathcal{K}, \mathcal{K})$-biset ${ }_{\mathcal{K}} \mathcal{K}_{\mathcal{K}}$ is a $\mathcal{K} \times \mathcal{K}^{\text {op }}$-set also a counit $\left(\mathbf{1}, \mathcal{K}^{\mathrm{op}} \times \mathcal{K}\right)$-biset ${ }_{1} \mathcal{K}_{\mathcal{K}}{ }^{\text {op }} \times \mathcal{K}$ and a unit $\left(\mathcal{K} \times \mathcal{K}^{\mathrm{op}}, \mathbf{1}\right)$-biset $\mathcal{K} \times \mathcal{K}^{\text {op }} \mathcal{K}_{\mathbf{1}}$.

From these we construct a $\left(\mathcal{K}, \mathcal{K} \times \mathcal{K}^{\text {op }} \times \mathcal{K}\right)$-biset

$$
\mathcal{K} \Omega_{\mathcal{K} \times \mathcal{K}}{ }^{\mathrm{op}} \times \mathcal{K}=\mathcal{K}_{\mathcal{K}}^{\mathcal{K}} \times{ }_{1} \mathcal{K}_{\mathcal{K}}{ }^{\mathrm{op} \times \mathcal{K}}
$$

and also a $\left(\mathcal{K} \times \mathcal{K}^{\mathrm{op}} \times \mathcal{K}, \mathcal{K}\right)$-biset

$$
\mathcal{K} \times \mathcal{K}^{\mathrm{op}} \times \mathcal{K} \Psi_{\mathcal{K}}=\mathcal{K} \times \mathcal{K}^{\mathrm{op}} \mathcal{K}_{\mathbf{1}} \times \mathcal{K}_{\mathcal{K}}^{\mathcal{K}}
$$

so that if r, s, x, z are objects of \mathcal{K} and y is an object of $\mathcal{K}^{\text {op }}$ we have

$$
\Omega(r,(x, y, z))=\{(\alpha, \beta) \mid \alpha: x \rightarrow r, \beta: z \rightarrow y\}
$$

and

$$
\Psi((x, y, z), s)=\{(\gamma, \delta) \mid \gamma: y \rightarrow x, \delta: s \rightarrow z\}
$$

Lemma
With these definitions

$$
\Omega \circ \Psi \cong \mathcal{K}_{\mathcal{K}} .
$$

Exchanging the roles of \mathcal{K} and $\mathcal{K}^{\text {op }}$ we obtain similar bisets Ω^{\prime} and Ψ^{\prime} with $\Omega^{\prime} \circ \Psi^{\prime} \cong \mathcal{K}^{\mathrm{op}} \mathcal{K}_{\mathcal{K}^{\mathrm{op}}}^{\mathrm{op}}$.

Proof.

The definition of the biset product at a pair of objects (r, s) is

$$
(\Omega \circ \psi)(r, s)=\bigsqcup_{(x, y, z) \in \mathcal{K} \times \mathcal{K}^{\mathrm{op}} \times \mathcal{K}} \Omega(r,(x, y, z)) \times \Psi((x, y, z), s) / \sim
$$

We define a morphism of bisets $\Omega \circ \Psi(r, s) \rightarrow \mathcal{K} \mathcal{K}_{\mathcal{K}}(r, s)$ by $((\alpha, \beta),(\gamma, \delta)) \mapsto \alpha \gamma \beta \delta$. This specification is constant on equivalence classes because if (ζ, θ, ψ) is a triple of morphisms in $\mathcal{K} \times \mathcal{K}^{\mathrm{op}} \times \mathcal{K}$, with suitable domains and codomains, then the pairs

$$
((\alpha, \beta)(\zeta, \theta, \psi),(\gamma, \delta))=((\alpha \zeta, \theta \beta \psi),(\gamma, \delta))
$$

and

$$
((\alpha, \beta),(\zeta, \theta, \psi)(\gamma, \delta))=((\alpha, \beta),(\zeta \gamma \theta, \psi \delta))
$$

both map to the same morphism in $\mathcal{K} \mathcal{K}_{\mathcal{K}}$, namely $\alpha \zeta \gamma \theta \beta \psi \delta$. This means we have defined a morphism of bisets. In the opposite direction we have an inverse map $\Omega \circ \psi \leftarrow \mathcal{K} \mathcal{K}_{\mathcal{K}}$ given at (r, s) by $\nu \mapsto\left(\left(1_{r}, 1_{r}\right),\left(1_{r}, \nu\right)\right)$.

Corollary

1. Each category \mathcal{K} has a dual object $\mathcal{K}^{\text {op }}$, in the sense of monoidal categories.
2. For any category \mathcal{K} and biset functor M, the value $M(\mathcal{K})$ is a direct summand of $M\left(\mathcal{K} \times \mathcal{K}^{\mathrm{op}} \times \mathcal{K}\right)$.

Yoneda-Dress construction

If M is a biset functor and \mathcal{C} a category then

$$
\begin{aligned}
\mathrm{P}_{\mathcal{K}}(M)(\mathcal{C}) & =M(\mathcal{C} \times \mathcal{K}), \\
\mathrm{P}_{\mathcal{K}}^{\mathrm{op}}(M)(\mathcal{C}) & =M\left(\mathcal{C} \times \mathcal{K}^{\mathrm{op}}\right)
\end{aligned}
$$

These are the Yoneda-Dress construction of M at \mathcal{K} and the opposite Yoneda-Dress construction of M at \mathcal{K}.

Definition

For each category \mathcal{D} let $F_{\mathcal{D}}$ denote the representable biset functor at \mathcal{D}, so $F_{\mathcal{D}}(\mathcal{C})=\operatorname{Hom}_{\mathbb{B}}(\mathcal{D}, \mathcal{C})=A(\mathcal{C}, \mathcal{D})$ is the R-linear span of the indecomposable $(\mathcal{C}, \mathcal{D})$-bisets. In particular $F_{1}=B$ is the Burnside ring functor.

Proposition
We have isomorphisms

$$
\mathrm{P}_{\mathcal{K}} F_{\mathcal{D}} \cong F_{\mathcal{K}}^{\mathrm{op} \times \mathcal{D}} \quad \text { and } \quad \mathrm{P}_{\mathcal{K}}^{\mathrm{op}} F_{\mathcal{D}} \cong F_{\mathcal{K} \times \mathcal{D}}
$$

as biset functors. As a particular case, $F_{\mathcal{D}} \cong \mathrm{P}_{\mathcal{D}}^{\mathrm{op}} B$.

Proof.

For any category \mathcal{C} we have

$$
\left(\mathrm{P}_{\mathcal{K}} F_{\mathcal{D}}\right)(\mathcal{C}) \cong F_{\mathcal{D}}(\mathcal{C} \times \mathcal{K}) \cong \operatorname{Hom}_{\mathbb{B}}(\mathcal{D}, \mathcal{C} \times \mathcal{K})
$$

using Yoneda's lemma. This is the Grothendieck group of $\mathcal{C} \times \mathcal{K} \times \mathcal{D}^{\text {op }}$-sets, which is also a description of $F_{\mathcal{K}}{ }^{\mathrm{op} \times \mathcal{D}}(\mathcal{C})$. The remaining statements follow.

Proposition
For each category \mathcal{K}, the functor $P_{\mathcal{K}}^{\mathrm{op}}: \mathcal{F} \rightarrow \mathcal{F}$ is both left and right adjoint to $P_{\mathcal{K}}$.

Definition

Let M and N be biset functors. We define the internal Hom of M and N to be

$$
\mathcal{H}(M, N):=\operatorname{Hom}_{\mathcal{F}}\left(M, \mathrm{P}_{\bullet}(N)\right),
$$

using the functoriality of the Yoneda-Dress construction in its subscript to make \mathcal{H} a biset functor.

Proposition

We have $\mathcal{H}(M, N) \cong \operatorname{Hom}_{\mathcal{F}}\left(\mathrm{P}_{\bullet}^{\mathrm{op}}(M), N\right)$ as biset functors.
Proof.
Prove it first when $M=F_{\mathcal{D}}$. In this case

$$
\begin{aligned}
\mathcal{H}(M, N)(\mathcal{C}) & =\operatorname{Hom}_{\mathcal{F}}\left(F_{\mathcal{D}}, \mathrm{P}_{\mathcal{C}}(N)\right) \\
& \cong\left(\mathrm{P}_{\mathcal{C}}(N)\right)(\mathcal{D}) \\
& \cong N(\mathcal{D} \times \mathcal{C}) .
\end{aligned}
$$

using Yoneda's Lemma.
It follows that the result is true whenever M is any projective biset functor, because it is a summand of a direct sum of representable functors.
Deduce the result for arbitrary M using a projective presentation of M and left exactness of \mathcal{H}.

Definition

We define the internal tensor product of (left) biset functors L and M to be the biset functor

$$
L \otimes M:=\left(\mathrm{P}_{\bullet}(L) \circ \tau\right) \otimes_{\mathcal{F}} M
$$

where the functoriality on \mathbb{B} is obtained via the subscript \bullet. Thus the value of $L \otimes M$ at a category \mathcal{C} is

$$
(L \otimes M)(\mathcal{C})=\left(\mathrm{P}_{\mathcal{C}}(L) \circ \tau\right) \otimes_{\mathcal{F}} M=L(\tau(-) \times \mathcal{C}) \otimes_{\mathcal{F}} M(-)
$$

Theorem
For all biset functors L, M and N we have

1. $\operatorname{Hom}_{\mathcal{F}}(L \otimes M, N) \cong \operatorname{Hom}_{\mathcal{F}}(M, \mathcal{H}(L, N))$, and
2. $\mathcal{H}(L \otimes M, N) \cong \mathcal{H}(M, \mathcal{H}(L, N))$.

Corollary
With the product operation \otimes and unit B the category of biset functors \mathcal{F} is a symmetric monoidal tensor category. Furthermore, if P and Q are projective biset functors then $P \otimes Q$ and $\mathcal{H}(P, Q)$ are also projective.

