Biset functors for categories

Peter Webb

University of Minnesota

UNAM Morelia, June 2023

Outline:

This material is taken from arXiv:2304.06863

Unit 1: C-Sets, the Burnside ring, biset functors

Unit 2: Representable bisets and (co)homology as a biset functor

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Unit 3: Simple biset functors

Unit 4: Correspondences

Unit 5: Monoidal structures; fibered biset functors

Unit 6: More about the Burnside ring

Correspondences

Given sets X and Y, a correspondence between X and Y is a subset $U \subset X \times Y$.

Given $U \subseteq X \times Y$ and $V \subseteq Y \times Z$ we define

 $UV := \{(x, z) \in X \times Z \mid \exists y \in Y \text{ so that } (x, y) \in U \text{ and } (y, z) \in V\}.$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

This is associative. There is an identity.

The correspondence category Rel: objects are finite sets. $\operatorname{Hom}_{\operatorname{Rel}}(Y, X) = \operatorname{correspondences}$ between X and Y.

A correspondence functor over k is a functor $\text{Rel} \rightarrow k$ -mod.

Realizing correspondences as functors

Let $U \subseteq X \times Y$ be a correspondence. For each subset *B* of *Y* put

$$^+U(B) = \{x \in X \mid \exists (x,y) \in R, y \in B\}.$$

Let 2^X = the poset of subsets of the set X.

Proposition

 $^+U: 2^Y \rightarrow 2^X$ is an order preserving map (a functor).

We have a functor $\operatorname{Rel} \to \operatorname{Cat}$ that sends $X \mapsto 2^X$ and $U \mapsto {}^+U$.

Correspondences determine birepresentable bisets

Theorem

The functor $H : \operatorname{Rel} \to \mathbb{B}$ that sends a set X to the poset 2^X and a correspondence $U \subset Y \times X$ to the biset $_{2^Y}2^Y_{(^+U)_{2^X}}$ embeds Rel in the category $\mathbb{B}^{1,1}$ of birepresentable bisets.

Corollary

Every biset functor on $\mathbb{B}^{1,1}$ restricts to a correspondence functor.

Example

$$\begin{array}{cccc} \emptyset & \longrightarrow & \{1\} \\ X = Y = [2] := \{1, 2\}, & 2^X = 2^Y = \bigcup & \bigcup \\ \{2\} & \longrightarrow & \{1, 2\} \\ U := \{(1, 1), (1, 2), (2, 2)\} \subset Y \times X \text{ is a morphism } X \to Y \text{ in Rel.} \\ + U : 2^X \to 2^Y \text{ has the effect } \begin{bmatrix} \emptyset \\ \{1\} \\ \{2\} \\ \{1, 2\} \end{bmatrix} \to \begin{bmatrix} \emptyset \\ \{1\} \\ \{1, 2\} \\ \{1, 2\} \end{bmatrix} \\ \text{We obtain a biset with size matrix:} & {}_{2^Y} 2^Y_{(+U)2^X} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 1 \end{bmatrix}. \\ \text{Notice: it is birepresentable: there are 1s down the left column and along the bottom row.}$$

The essential algebras

Put sets in order $[0]<[1]<[2]<\cdots$ and categories in order $2^{[0]}<2^{[1]}<2^{[2]}<\cdots$

Recall $I_{\mathcal{C}}^{<}$ = the *k*-span of the $(\mathcal{C}, \mathcal{C})$ -bisets that factor through categories \mathcal{D} with $\mathcal{D} < \mathcal{C}$. Ess $(\mathcal{C}) := \operatorname{End}_{\mathbb{B}^{1,1}}(\mathcal{C})/I_{\mathcal{C}}^{<}$ is the essential algebra of \mathcal{C} .

There is a similarly defined essential algebra for the linearized correspondence category RRel.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Consequences

Let $H : \operatorname{Rel} \to \mathbb{B}^{1,1}$ be the functor constructed.

Corollary

The functor H induces a ring homomorphism $\operatorname{Ess}(X) \to \operatorname{Ess}(2^X)$.

Theorem In fact, this map is an isomorphism.

Corollary

Simple correspondence functors and simple biset functors on the full subcategory of $\mathbb{B}_{1,1}$ with posets 2^X as objects are parametrized in the same way.