Biset functors for categories

Peter Webb

University of Minnesota

UNAM Morelia, June 2023

Outline:

This material is taken from arXiv:2304.06863

Unit 1: C-Sets, the Burnside ring, biset functors

Unit 2: Representable bisets and (co)homology as a biset functor

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Unit 3: Simple biset functors

Unit 4: Correspondences

Unit 5: Monoidal structures; fibered biset functors

Unit 6: More about the Burnside ring

Recall: simple biset functors on groups

Biset functors form an abelian category, so we have the concept of a simple functor S: the only subfunctors are S and 0. Simple functors are naturally defined over a field. A subfunctor T of S means $T(C) \subset S(C)$ for all categories C.

The simple biset functors on groups are parametrized $S_{H,V}$ where

- a group H, taken up to isomorphism
- a simple representation V of Out H.

For every group G, $S_{H,V}(G)$ is either simple or zero as an $\operatorname{End}_{\mathbb{B}}(G)$ -module. H is the unique group G of minimal size on which $S_{H,V}(G) \neq 0$ and $V = S_{H,V}(H)$.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Simple functors and full subcategories of ${\mathbb B}$

Proposition

Let S be a simple biset functor defined on \mathbb{B} . Let \mathbb{B}' be a full subcategory of \mathbb{B} and let T be a simple functor defined on \mathbb{B}' .

- The restriction of S to \mathbb{B}' is either zero or a simple functor.
- ► T extends uniquely to a simple functor on B, whose restriction to B' is T.

Corollary

- 1. We have a bijection {simple functors on \mathbb{B} } \leftrightarrow {simple functors on \mathbb{B}' } \sqcup {simple functors that vanish on \mathbb{B}' }
- 2. For each object C of \mathbb{B} , S(C) is a simple $\operatorname{End}_{\mathbb{B}}(C)$ -module.
- For every simple End_B-module U, there is a unique simple S on B with S(C) = U

Corollary

If $\operatorname{End}_{\mathbb{B}}(\mathcal{C})$ has n isomorphism types of simple modules, there are n isomorphism types of simple biset functors S with $S(\mathcal{C}) \neq 0$.

Example

 $\operatorname{End}_{\mathbb{B}}(1)=R$ so there is only one simple biset functor non-zero on 1, namely $S_{1,R}$

Example

 $\operatorname{End}_{\mathbb{B}^{1,1}}(\mathcal{A}_2) \cong \operatorname{Mat}_{2,2} \oplus R$ so there are two simple biset functors for $\mathbb{B}^{1,1}$ that are non-zero on \mathcal{A}_2 . One of them is $S_{1,k}$. Which one?

Example

The discrete category [n] has $\operatorname{End}_{\mathbb{B}}([n]) \cong \operatorname{Mat}_{n,n}(R)$ so there is one simple biset functor non-zero on [n], the same answer for $\mathbb{B}^{(1,1)}$. Show that it is $S_{1,R}$.

The essential algebra

Choose any well-order on the ($\mathbb B$ -isomorphism classes of) finite categories.

Let $I_{\mathcal{C}}^{<}$ = the *R*-span of the $(\mathcal{C}, \mathcal{C})$ -bisets that factor through categories \mathcal{D} with $\mathcal{D} < \mathcal{C}$.

Define $\operatorname{Ess}_{\mathcal{R}}(\mathcal{C}) := \operatorname{End}_{\mathbb{B}_{\mathcal{R}}}(\mathcal{C})/I_{\mathcal{C}}^{<}$, the essential algebra of \mathcal{C} .

Example

When G is a finite group we have $\operatorname{Ess}(G) \cong R \operatorname{Out} G$.

Example

Order categories so that $\mathbf{1} = [1] < [2] < \cdots$ starts the order. Then $\operatorname{Ess}([n]) = R$ when n = 1 and is zero if n > 1. This shows $\operatorname{Ess}(\mathcal{C}) \neq R \operatorname{Out} \mathcal{C}$ in general.

(日)((1))

Example

Order categories so that $1<\mathcal{A}_2$ starts the order. Then $\mathrm{Ess}_{\mathbb{B}^{(1,1)}}(\mathcal{A}_2)=R.$

A parametrization of simple biset functors

Proposition

Let S be a biset functor and C a minimal category with $S(C) \neq 0$. Then $I_{C}^{<}$ acts as 0 on S(C). The structure of S(C) as an $\operatorname{End}_{\mathbb{B}}(C)$ -module is the same as its structure as an $\operatorname{Ess}_{R}(C)$ -module.

Corollary

Simple biset functors biject with pairs (C, V) where V is a simple Ess(C)-module.