Biset functors for categories

Peter Webb

University of Minnesota

UNAM Morelia, June 2023

Outline:

This material is taken from arXiv:2304.06863
Unit 1: \mathcal{C}-Sets, the Burnside ring, biset functors

Unit 2: Representable bisets and (co)homology as a biset functor

Unit 3: Simple biset functors

Unit 4: Correspondences

Unit 5: Monoidal structures; fibered biset functors

Unit 6: More about the Burnside ring

Sets with an action of a category

\mathcal{C} is a finite category and Set denotes the category of finite sets. A \mathcal{C}-set is a functor $\Omega: \mathcal{C} \rightarrow$ Set.

The Burnside ring of \mathcal{C} is
$B(\mathcal{C})=$ the Grothendieck group finite \mathcal{C}-sets with relations $\Theta=\Omega+\Psi$ if $\Theta \cong \Omega \sqcup \Psi$ as \mathcal{C}-sets.
The product of \mathcal{C}-sets is defined pointwise:
$(\Omega \cdot \Psi)(x):=\Omega(x) \times \Psi(x)$.

The poset $\mathcal{A}_{2}=x<y$

Example

$\mathcal{C}=\mathcal{A}_{2}=\underset{\boldsymbol{x}}{\stackrel{\alpha}{\rightarrow}} \boldsymbol{\bullet}$ is the poset $x<y$. The \sqcup-indecomposable \mathcal{C}-sets have the form

$$
\Omega_{n}:=\{1, \ldots, n\} \rightarrow\{*\}, \quad n \geq 0 .
$$

A finite category may have infinitely many non-isomorphic 'transitive' sets.

$$
B(\mathcal{C})=\mathbb{Z}\left\{\Omega_{0}, \Omega_{1}, \Omega_{2}, \ldots\right\} \cong \mathbb{Z} \mathbb{N}_{\geq 0}^{\times}
$$

The ring is more complicated than we might expect. It is not even finitely generated. It is not semisimple over any ring.

More general actions of a category

More generally, instead of Set, we may consider a symmetric monoidal category \mathbb{S} with product \diamond, such that finite colimits exist and commute with $-\diamond X$ for all objects X in \mathbb{S} and that decompositions with respect to \sqcup are unique up to isomorphism.

For example \mathbb{S} could be G-Set, or $R G$-mod when R is a field, or the category FI of finite sets with monomorphisms, or span categories of these.

A \mathcal{C}-object in \mathbb{S} is a functor $\Omega: \mathcal{C} \rightarrow \mathbb{S}$. We define $B_{\mathbb{S}}(\mathcal{C})$ by analogy with $B(\mathcal{C})$.
For example, $B_{\mathrm{FI}}(\mathcal{C})$ is a subring of $B(\mathcal{C})$.
Most, and possibly all constructions we shall consider work for \mathcal{C}-objects in \mathbb{S}.

The Burnside ring of a discrete category

Let [n] be the category with n objects and only identity morphisms.
Exercise: $B([n])$
How big is it? Is it semisimple if we take coefficients to be a field?

Bisets for categories

These are called distributors or profunctors in the literature and were introduced in
J. Bénabou, Les distributeurs, 1973.
and appear also in
Marta Bunge, Categories of Set-Valued Functors, University of Pennsylvania, 1966.
There is a good account in
F. Borceux, Handbook of Categorical Algebra I, Cambridge Univ. Press 1994.

Given categories \mathcal{C} and \mathcal{D} a \mathcal{C}-set is a functor $F: \mathcal{C} \rightarrow$ finite sets. A $(\mathcal{C}, \mathcal{D})$-biset is a functor $\Omega: \mathcal{C} \times \mathcal{D}^{\text {op }} \rightarrow$ finite sets.

Composition of bisets

Given a $(\mathcal{C}, \mathcal{D})$-biset ${ }_{\mathcal{C}} \Omega_{\mathcal{D}}$ and a $(\mathcal{D}, \mathcal{E})$-biset ${ }_{\mathcal{D}} \Psi_{\mathcal{E}}$ there is a $(\mathcal{C}, \mathcal{E})$-biset $\Omega \circ \Psi$ given by

$$
\Omega \circ \Psi(x, z)=\bigsqcup_{y \in \mathcal{D}} \Omega(x, y) \times \Psi(y, z) / \sim
$$

where \sim is the equivalence relation generated by $(u \beta, v) \sim(u, \beta v)$ whenever $u \in \Omega\left(x, y_{1}\right), v \in \Psi\left(y_{2}, z\right)$ and $\beta: y_{2} \rightarrow y_{1}$ in \mathcal{D}.

The biset category with categories as objects

Proposition (Bénabou)

The operation \circ is associative up to isomorphism of bisets. For each category \mathcal{C} there is an identity biset $\mathcal{C}_{\mathcal{C}}$, specified on each pair of objects of \mathcal{C} as $\mathcal{C}_{\mathcal{C}}(x, y)=\operatorname{Hom}_{\mathcal{C}}(y, x)$.

Let $A_{R}(\mathcal{C}, \mathcal{D})$ be the free R-module with basis the isomorphism classes of finite $(\mathcal{C}, \mathcal{D})$-bisets that are indecomposable with respect to \sqcup.
The biset category \mathbb{B} over R has as objects all finite categories, with homomorphisms $\operatorname{Hom}_{\mathbb{B}}(\mathcal{C}, \mathcal{D})=A_{R}(\mathcal{D}, \mathcal{C})$.
A biset functor is an R-linear functor $\mathbb{B} \rightarrow R$-mod.
This extends the usual notion of biset functors defined on groups.

A calculation in \mathbb{B}

Let $n \in \mathbb{N}$,
$[n]=$ category with object set $\underline{n}=\{1, \ldots$,$\} , and only identity$ morphisms.
An ([m], $[n]$)-biset is a set for the category $[m] \times[n]^{\text {op }}=$ discrete category with the $m n$ objects (i, j).
A set for it is a list of $m n$ sets $S_{i j}$. They form an array

$$
\Omega=\left(S_{i j}\right)=\left(\begin{array}{cccc}
S_{11} & S_{12} & \cdots & S_{1 m} \\
\vdots & & & \vdots \\
S_{n 1} & S_{n 2} & \cdots & S_{n m}
\end{array}\right)
$$

It is a disjoint union of copies of the bisets $E_{i j}$ which have a one-point set in position (i, j) and are empty elsewhere. Thus the Grothendieck group $A_{\mathbb{Z}}([m],[n]) \cong \operatorname{Mat}_{m, n}(\mathbb{Z})$.
Composition of bisets is matrix multiplication.
The full subcategory of the biset category \mathbb{B}_{R} with objects $[m] \simeq$ the category of free modules over R with R-module homomorphisms as morphisms.

The size matrix of a $(\mathcal{C}, \mathcal{D})$-biset Ω

This is the matrix $|\Omega|$ with rows indexed by the objects of \mathcal{C}, columns indexed by the objects of \mathcal{D}, and where the (x, y) entry is the size $|\Omega(x, y)|$.

Example

Let $\mathcal{C}=\mathcal{E}=\mathcal{A}_{2}=1 \rightarrow 2$ and $\mathcal{D}=\mathcal{A}_{3}=1 \xrightarrow{\alpha} 2 \xrightarrow{\beta} 3$ with the objects placed in the order indicated. Consider a (\mathcal{C}, \mathcal{D})-biset Ω and a $(\mathcal{D}, \mathcal{E})$-biset Ψ with the size matrices indicated:

$$
|\Omega|=\left[\begin{array}{lll}
1 & 1 & 0 \\
1 & 1 & 1
\end{array}\right], \quad|\Psi|=\left[\begin{array}{ll}
1 & 0 \\
1 & 0 \\
1 & 1
\end{array}\right], \quad|\Omega \circ \Psi|=\left[\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right]
$$

Note $|\Omega||\Psi|=\left[\begin{array}{ll}2 & 0 \\ 3 & 1\end{array}\right]$.

Examples of biset functors

Example

For each finite category \mathcal{C} the representable functor $\operatorname{Hom}_{\mathbb{B}}(\mathcal{C},-)$ is a biset functor. When $\mathcal{C}=1$ this is the Burnside ring functor B, because $\operatorname{Hom}_{\mathbb{B}}(1, \mathcal{D})$ is the Grothendieck group of $(\mathcal{D}, 1)$-bisets with respect to \sqcup, and these bisets are really the same as \mathcal{D}-sets.

Example

For each finite dimensional algebra Λ over a field k we let $K_{0}(\Lambda, \oplus)$ be the Grothendieck group of finite dimensional Λ-modules with respect to direct sum decompositions. For each finite category \mathcal{C} the assignment of $K_{0}(k \mathcal{C}, \oplus)$ has the structure of a biset functor.

Basic bisets

Definition

Given categories \mathcal{C}, \mathcal{D} and \mathcal{E}, and functors $F: \mathcal{C} \rightarrow \mathcal{E}$ and $G: \mathcal{D} \rightarrow \mathcal{E}$ we obtain a $(\mathcal{C}, \mathcal{D})$-biset that we denote $\mathcal{C}^{F} \mathcal{E}_{G_{\mathcal{D}}}$. On objects x of \mathcal{C} and y of \mathcal{D} this biset is defined by

$$
\mathcal{C}^{F} \mathcal{E}_{G_{\mathcal{D}}}(x, y):=\operatorname{Hom}_{\mathcal{E}}(G(y), F(x))
$$

The functorial action of \mathcal{C} and \mathcal{D} is given by applying F and G, and composition.
The $(\mathcal{C}, \mathcal{C})$-biset ${ }_{\mathcal{C}} \mathcal{C}_{\mathcal{C}}$ acts as the identity at \mathcal{C}.

The Yoneda embedding

Proposition

1. There is a functor $\phi:$ Cat $\rightarrow \mathbb{B}_{R}$ defined to be the identity on objects, and defined on functors $F: \mathcal{C} \rightarrow \mathcal{D}$ to be $\phi(F)={ }_{\mathcal{D}} \mathcal{D}_{F_{\mathcal{C}}}: \mathcal{C} \rightarrow \mathcal{D}$. There is also a contravariant functor $\hat{\phi}:$ Cat $^{\mathrm{op}} \rightarrow \mathbb{B}_{R}$ that is again the identity on objects, and with $\hat{\phi}(F)={ }_{\mathcal{C}^{F}} \mathcal{D}_{\mathcal{D}}$.
2. Under these functors ϕ and $\hat{\phi}$, two functors $F, G: \mathcal{C} \rightarrow \mathcal{D}$ are sent to the same morphism in \mathbb{B}_{R} if and only if F and G are naturally isomorphic.

The Yoneda functor

We get functors Cat $\rightarrow \mathbb{B}$ and $\mathrm{Cat}^{\mathrm{op}} \rightarrow \mathbb{B}$ that are the identity on objects, and that send a functor $F: \mathcal{C} \rightarrow \mathcal{D}$ to ${ }_{\mathcal{D}} \mathcal{D}_{F_{\mathcal{C}}}$ in the covariant case and ${ }_{\mathcal{C}}{ }^{F} \mathcal{D}_{\mathcal{D}}$ in the contravariant case.

Proposition
Under these functors Cat $\rightarrow \mathbb{B}$ and Cat $^{\mathrm{op}} \rightarrow \mathbb{B}$, two functors $F, G: \mathcal{C} \rightarrow \mathcal{D}$ are sent to the same morphism in \mathbb{B} if and only if F and G are naturally isomorphic.
If \mathcal{D} is a poset then $F, G: \mathcal{C} \rightarrow \mathcal{D}$ are sent to the same morphism in \mathbb{B} if and only if $F=G$.

The outer automorphism group of a category

Definition

Out \mathcal{C} is the group of self-equivalences of \mathcal{C}, up to natural isomorphism.

Corollary

Let \mathcal{C} and \mathcal{D} be finite categories.

1. If \mathcal{C} and \mathcal{D} are equivalent categories then they are isomorphic in the biset category.
2. The monoid homomorphism $\operatorname{End}_{\mathrm{Cat}}(\mathcal{C}) \rightarrow \operatorname{End}_{\mathbb{B}}(\mathcal{C})$ determined by the functor ϕ induces an injective group homomorphism

$$
\operatorname{Out}_{\mathrm{Cat}}(\mathcal{C}) \rightarrow \operatorname{Aut}_{\mathbb{B}}(\mathcal{C})
$$

3. For every biset functor F, the evaluation $F(\mathcal{C})$ has the structure of an R Out \mathcal{C}-module.

Idempotent completions

Theorem

Let R be a commutative ring with 1 , and suppose that \mathcal{C} and \mathcal{D} are categories. If the idempotent completions of \mathcal{C} and \mathcal{D} are equivalent then \mathcal{C} and \mathcal{D} are isomorphic in the biset category \mathbb{B}_{R}. It follows in this situation that if M is a biset functor then $M(\mathcal{C}) \cong M(\mathcal{D})$ and, in particular, the Burnside rings of \mathcal{C} and \mathcal{D} are isomorphic.

Application: the Burnside rings of the categories \mathcal{C} and \mathcal{D} are isomorphic.

$$
\mathcal{C}=\alpha \int x \bullet \stackrel{u}{\stackrel{\rightharpoonup}{\rightleftarrows}} \bullet y
$$

$$
\mathcal{D}=\alpha \circlearrowleft x
$$

with $u v=1_{y}$ and $v u=\alpha, \alpha^{2}=\alpha \neq 1_{x}$.

Factorizations as products of basic bisets

Bouc showed for groups that every indecomposable (G, J)-biset can be factorized

$$
{ }_{G} \Omega_{J}={ }_{G} G_{H} \circ{ }_{H} Q_{K} \circ{ }_{K} J_{J}
$$

where $H \leq G, K \leq J$ and Q is an image of H and K.
The analogous statement is not true for bisets for categories in general.

However, every $(\mathcal{C}, \mathcal{D})$-biset ${ }_{\mathcal{C}} \Omega_{\mathcal{D}}$ can be written as

$$
{ }_{\mathcal{c}} \Omega_{\mathcal{D}}={ }_{c} \mathcal{E}_{\mathcal{D}}=\mathcal{C}_{\mathcal{E}} \circ \mathcal{E}_{\mathcal{D}}
$$

where \mathcal{E} is some category that has \mathcal{C} and \mathcal{D} as full subcategories. In our construction the category \mathcal{E} has more morphisms than \mathcal{C} or \mathcal{D}.

The cograph of a biset

Given a $(\mathcal{C}, \mathcal{D})$-biset ${ }_{\mathcal{C}} \Omega_{\mathcal{D}}$ we construct a category $\mathcal{E}=\operatorname{Cograph}(\Omega)$.
The objects of $\operatorname{Cograph}(\Omega)$ are $\operatorname{Ob\mathcal {C}} \sqcup \mathrm{Ob} \mathcal{D}$ and

$$
\operatorname{Hom}_{\operatorname{Cat}(\Omega)}(x, y)= \begin{cases}\operatorname{Hom}_{\mathcal{C}}(x, y) & \text { if } x, y \in \mathcal{C} \\ \operatorname{Hom}_{\mathcal{D}}(x, y) & \text { if } x, y \in \mathcal{D} \\ \Omega(y, x) & \text { if } x \in \mathcal{D} \text { and } y \in \mathcal{C} \\ \emptyset & \text { if } x \in \mathcal{C} \text { and } y \in \mathcal{D}\end{cases}
$$

Proposition
Let Ω be a $(\mathcal{C}, \mathcal{D})$-biset. Then $\mathcal{E}=\operatorname{Cograph}(\Omega)$ has \mathcal{C} and \mathcal{D} as full subcategories and $\Omega=c \mathcal{E}_{\mathcal{D}}$ as $(\mathcal{C}, \mathcal{D})$-bisets.

