Green Biset Functors

Topics in Representation Theory: Biset Functors

Itzel Rosas Martínez
I. Preliminaries
2. Green biset functors
3. Examples
4. Modules over a Green biset functor
5. Ideals of a Green biset functor

Monoid object

Let $(\mathcal{M}, \otimes, \mathbf{1}, \alpha, \lambda, \rho)$ be a monoidal category. A monoid in \mathcal{M} is an object $m \in \mathcal{M}$ with morphisms

$$
\mu: m \otimes m \longrightarrow m
$$

and

$$
e: 1 \longrightarrow m
$$

in \mathcal{M} such that the following diagrams commute:

Example

In (R-Mod, \otimes, R, \ldots), monoid objects are the R-algebras.

Morphism of monoids

Let (m, μ, e) and ($m^{\prime}, \mu^{\prime}, e^{\prime}$) be monoids in \mathcal{M}. A monoid morphism is a morphism $f: m \longrightarrow m^{\prime}$ in \mathcal{M} such that the following diagrams commute:

Green biset functors

Definition

A Green biset functor (on \mathcal{D}, with values in R-Mod) is a monoid object in the monoidal category $\left(\mathcal{F}_{\mathcal{D}, R}, \otimes, R B, \ldots\right)$.

Green biset functors

Definition

A Green biset functor (on \mathcal{D}, with values in R-Mod) is a monoid object in the monoidal category $\left(\mathcal{F}_{\mathcal{D}, R}, \otimes, R B, \ldots\right)$.

This means that a Green biset functor is an object A of $\mathcal{F}_{\mathcal{D}, R}$, together with maps of biset functors

$$
\mu: A \otimes A \longrightarrow A
$$

and

$$
e: R B \longrightarrow A
$$

such that the following diagrams commute:

where α, λ and ρ are the isomorphisms afforded by Proposition 8.4.6.

Equivalently, a Green biset functor is an object $A \in \mathcal{F}_{\mathcal{D}, R}$ together with bilinear products $A(G) \times A(H) \longrightarrow A(G \times H)$, denoted by $(a, b) \longmapsto a \times b$, for objects G, H of \mathcal{D}, and an element $\varepsilon_{A} \in A(\mathbf{1})$, satisfying the following conditions:

Equivalently, a Green biset functor is an object $A \in \mathcal{F}_{\mathcal{D}, R}$ together with bilinear products $A(G) \times A(H) \longrightarrow A(G \times H)$, denoted by $(a, b) \longmapsto a \times b$, for objects G, H of \mathcal{D}, and an element $\varepsilon_{A} \in A(\mathbf{1})$, satisfying the following conditions:

- (Associativity) If $\alpha_{G, H, K}: G \times(H \times K) \longrightarrow(G \times H) \times K$ is the canonical group isomorphism, then for any $a \in A(G), b \in A(H)$, and $c \in A(K)$,

$$
(a \times b) \times c=A\left(\operatorname{Iso}\left(\alpha_{G, H, K}\right)\right)(a \times(b \times c)) .
$$

Equivalently, a Green biset functor is an object $A \in \mathcal{F}_{\mathcal{D}, R}$ together with bilinear products $A(G) \times A(H) \longrightarrow A(G \times H)$, denoted by $(a, b) \longmapsto a \times b$, for objects G, H of \mathcal{D}, and an element $\varepsilon_{A} \in A(\mathbf{1})$, satisfying the following conditions:

- (Associativity) If $\alpha_{G, H, K}: G \times(H \times K) \longrightarrow(G \times H) \times K$ is the canonical group isomorphism, then for any $a \in A(G), b \in A(H)$, and $c \in A(K)$,

$$
(a \times b) \times c=A\left(\operatorname{Iso}\left(\alpha_{G, H, K}\right)\right)(a \times(b \times c)) .
$$

- (Identity element) Let $\lambda_{G}: \mathbf{1} \times G \longrightarrow G$ and $\rho_{G}: G \times \mathbf{1} \longrightarrow G$ denote the canonical group isomorphisms. Then for any $a \in A(G)$,

$$
A\left(\operatorname{Iso}\left(\lambda_{G}\right)\right)\left(\varepsilon_{A} \times a\right)=a=A\left(\operatorname{Iso}\left(\rho_{G}\right)\right)\left(a \times \varepsilon_{A}\right)
$$

Equivalently, a Green biset functor is an object $A \in \mathcal{F}_{\mathcal{D}, R}$ together with bilinear products $A(G) \times A(H) \longrightarrow A(G \times H)$, denoted by $(a, b) \longmapsto a \times b$, for objects G, H of \mathcal{D}, and an element $\varepsilon_{A} \in A(\mathbf{1})$, satisfying the following conditions:

- (Associativity) If $\alpha_{G, H, K}: G \times(H \times K) \longrightarrow(G \times H) \times K$ is the canonical group isomorphism, then for any $a \in A(G), b \in A(H)$, and $c \in A(K)$,

$$
(a \times b) \times c=A\left(\operatorname{Iso}\left(\alpha_{G, H, K}\right)\right)(a \times(b \times c)) .
$$

- (Identity element) Let $\lambda_{G}: \mathbf{1} \times G \longrightarrow G$ and $\rho_{G}: G \times \mathbf{1} \longrightarrow G$ denote the canonical group isomorphisms. Then for any $a \in A(G)$,

$$
A\left(\operatorname{Iso}\left(\lambda_{G}\right)\right)\left(\varepsilon_{A} \times a\right)=a=A\left(\operatorname{Iso}\left(\rho_{G}\right)\right)\left(a \times \varepsilon_{A}\right)
$$

- (Functoriality) If $\varphi: G \longrightarrow G^{\prime}$ and $\psi: H \longrightarrow H^{\prime}$ are morphisms in $R \mathcal{D}$, then for any $a \in A(G)$ and $b \in A(H)$,

$$
A(\varphi \times \psi)(a \times b)=A(\varphi)(a) \times A(\psi)(b)
$$

Proof

By the Universal Property of \otimes, we get

$$
\operatorname{Hom}_{\mathcal{F}_{\mathcal{D}, R}}(M \otimes N, P) \cong \operatorname{Hom}_{R \mathcal{D} \times R \mathcal{D}}\left(M\left(\left(_{_}\right) \otimes N\left(__{_}\right), P\left(__{-} \times __{_}\right)\right)\right.
$$

for all $M, N, P \in \mathcal{F}_{\mathcal{D}, R}$. If $M=N=P=A$ we have

$$
\begin{gathered}
\operatorname{Hom}_{\mathcal{F}_{\mathcal{D}, R}}(A \otimes A, A) \longmapsto \operatorname{Hom}_{R \mathcal{D} \times R \mathcal{D}}\left(A\left(_{-}\right) \otimes A\left(\left(_{-}\right), A\left(\times_{-}\right)\right)\right. \\
\mu \longmapsto \dot{\mu}
\end{gathered}
$$

Note that $\dot{\mu}$ is natural, so if $G, H, K, L \in R \mathcal{D},{ }_{H} x_{G}, L y_{K}$ morphisms in $R \mathcal{D}$, $a \in A(G)$, and $b \in A(H)$, the following diagram commutes:

$$
\begin{array}{cl}
A(G) \otimes_{R} A(K) & \xrightarrow{\dot{\mu}_{G, K}} A(G \times K) \\
A(x) \otimes A(y) \downarrow & \\
A(H) \otimes_{R} A(L) \xrightarrow{\downarrow} \xrightarrow{\dot{\mu}_{H, L}} A(x \times y) \\
A(H \times L)
\end{array}
$$

If we denote $\dot{\mu}_{G, K}(a \otimes b):=a \times b$, we'll have

$$
A(x)(a) \otimes A(y)(b) \longmapsto A(x)(a) \times A(y)(b)=A(x \times y)(a \times b)
$$

Therefore, we have functoriality.

Notice that $\dot{\mu}$ is a morphism in R-Mod, so it corresponds to a unique bilinear map, then we have the following commutative diagram:

$$
\begin{aligned}
& A(G) \times A(K) \xrightarrow{\pi} A(G) \otimes_{R} A(K) \xrightarrow{\dot{\mu}_{G, K}} A(G \times K) \\
& A(x) \times A(y) \downarrow \quad A(x) \otimes A(y) \downarrow \quad \downarrow A(x \times y) \\
& A(H) \times A(L) \xrightarrow[\pi]{\longrightarrow} A(H) \otimes_{R} A(L) \xrightarrow[\dot{\mu}_{H, L}]{\longrightarrow} A(H \times L)
\end{aligned}
$$

Let $\times:=\dot{\mu} \circ \pi$, which is bilinear.

If we take $\varepsilon=[\mathbf{1} / \mathbf{1}] \in R B(\mathbf{1})$ and let x be a left G-set, notice that

$$
x \cong x \times_{1} \varepsilon
$$

Consider $e: R B \longrightarrow A$, so $e_{\mathbf{1}}: R B(\mathbf{1}) \cong R \varepsilon \longrightarrow A(\mathbf{1})$. We define

$$
\varepsilon_{A}:=e_{1}(\varepsilon) .
$$

We have the following commutative diagram:

By the bijective correspondence, we have

$$
R B\left((_ { - }) \otimes _ { R } A \left((_ { - }) \xrightarrow { e \otimes _ { 1 _ { A } () } } A \left((_ { - }) \otimes _ { R } A \left(\left(_{-}\right)\right.\right.\right.\right.
$$

where $\check{\imath}: R B\left(\left(_{)}\right) \otimes_{R} A()\right) \longrightarrow A\left({ }_{-} \times_{_}\right)$is such that $\forall G, H \in R \mathcal{D}$

$$
\begin{aligned}
\check{\iota}_{G, H}: R B(G) & \otimes_{R} A(H) \longrightarrow A(G \times H) \\
x & \otimes a \longmapsto A\left(\left({ }_{G} x_{\mathbf{1}} \times I d_{H}\right) \circ \mathrm{Iso}_{H}^{1 \times H}\right)(a)
\end{aligned}
$$

This is a bilinear natural map.

With that definition, the following diagram commutes:

$$
\begin{aligned}
& R B(\mathbf{1}) \otimes_{R} A(G) \xrightarrow{e_{1} \otimes 1_{A(G)}} A(\mathbf{1}) \otimes_{R} A(G) \\
& \beta_{1, \sigma} \downarrow \\
& A(G) \longleftarrow \underset{A\left(1 \text { ISO }_{1 \times G}^{G}\right)}{ } A(\mathbf{1} \times G)
\end{aligned}
$$

so

If $\varepsilon_{A} \in A(\mathbf{1})$ is such that for every $G \in R \mathcal{D}$ and for every $a \in A(G)$,

$$
A\left(\operatorname{Iso}_{1 \times G}^{G}\right)\left(\varepsilon_{A} \times a\right)=a=A\left(\operatorname{Iso}_{G \times \mathbf{1}}^{G}\right)\left(a \times \varepsilon_{A}\right),
$$

we have a bijective correspondence

$$
\begin{aligned}
& \operatorname{Hom}_{\mathcal{F}_{\mathcal{D}, R}}(R B, A) \longrightarrow A(\mathbf{1}) \\
& \eta \longmapsto \eta_{\mathbf{1}}(\varepsilon) \\
& e(a)_{G}: R B(G) \rightarrow A(G) \text { s.t. } \longleftrightarrow a \\
& x \mapsto A\left({ }_{G} x_{\mathbf{1}}\right)(a)
\end{aligned}
$$

Setting $e_{1}(\varepsilon)=\varepsilon_{A}$, we have a morphism $e: R B \longrightarrow A$.

Let $G, H \in R \mathcal{D}, x \in R B(G)$ and $a \in A(H)$. Note that

$$
\begin{aligned}
\dot{\mu}_{G, H}\left(e_{G}(x) \otimes a\right) & =\dot{\mu}_{G, H}\left(A(x)\left(\varepsilon_{A}\right) \otimes A\left(\operatorname{ld}_{H}\right)(a)\right) \\
& =A\left(x \times \operatorname{Id}_{H}\right) \dot{\mu}_{1, H}\left(\varepsilon_{A} \otimes a\right) \\
& =A\left(x \times \operatorname{ld}_{H}\right)\left(\varepsilon_{A} \times a\right) \\
& =A\left(\left(x \times \operatorname{Id}_{H}\right) \circ \text { Iso }_{H}^{1 \times H}\right)(a) \\
& =\breve{\iota}_{G, H}(x \otimes a)
\end{aligned}
$$

Hence,

$$
R B\left((_ { - }) \otimes _ { R } A \left((_ { - }) \xrightarrow { e \otimes \mathrm { l } d _ { A } } A \left((_ { - }) \otimes _ { R } A \left(\left(_{-}\right)\right.\right.\right.\right.
$$

commutes. By naturality of the correspondence, the diagram

commutes.

We have $\alpha: A \otimes(A \otimes A) \longrightarrow(A \otimes A) \otimes A$ that can be corresponded to

$$
\dot{\alpha}: A\left(_\right) \otimes_{R}\left(A\left(_\right) \otimes_{R} A\left(__{-}\right)\right) \longrightarrow\left(A\left(_\right) \otimes_{R} A\left(_\right)\right) \otimes_{R} A\left(_\right)
$$

We can check that for every $M, N, P, T \in \mathcal{F}_{\mathcal{D}, R}$,
$\left.\operatorname{Hom}(M \otimes(N \otimes P), T) \cong \operatorname{Hom}\left(M\left(_\right) \otimes_{R}\left(N()_{-}\right) \otimes_{R} P\left(_\right)\right), T\left(_\times\left(_\times _\right)\right)\right)(*)$

$$
\cong \operatorname{Hom}\left(\left(M\left(\left(_{-}\right) \otimes_{R} N\left(_\right)\right) \otimes_{R} P\left(_\right), T\left(\left(\times_{-}\right) \times{ }_{-}\right)\right)(* *)\right.
$$

We have $\alpha: A \otimes(A \otimes A) \longrightarrow(A \otimes A) \otimes A$ that can be corresponded to

$$
\dot{\alpha}: A\left(_\right) \otimes_{R}\left(A\left(_\right) \otimes_{R} A\left(\left(_{-}\right)\right) \longrightarrow\left(A\left(_\right) \otimes_{R} A\left(__{-}\right)\right) \otimes_{R} A\left(_\right)\right.
$$

We can check that for every $M, N, P, T \in \mathcal{F}_{\mathcal{D}, R}$,
$\operatorname{Hom}(M \otimes(N \otimes P), T) \cong \operatorname{Hom}\left(M\left(_\right) \otimes_{R}\left(N\left(_\right) \otimes_{R} P\left(_\right)\right), T\left(_\times\left(_\times _\right)\right)\right)(*)$

$$
\cong \operatorname{Hom}\left(\left(M\left(__{-}\right) \otimes_{R} N\left(_\right)\right) \otimes_{R} P\left(_\right), T\left(\left(_\times_{_}\right) \times _\right)\right)(* *)
$$

Let $\sigma_{G, H, K}:=T\left(\operatorname{Iso}_{G \times(H \times K)}^{(G \times H) \times K}\right)$, then we have

This is a natural isomorphism.

When $M=N=P=T=A$, we know that the following diagram commutes:

i.e., $\alpha^{*}\left(\mu \circ\left(\mu \otimes \mathrm{Id}_{A}\right)\right)=\mu \circ\left(\mathrm{Id}_{A} \otimes \mu\right)$.

Note that

$$
\begin{gathered}
\alpha^{*}\left(\mu \circ\left(\mu \otimes \operatorname{Id}_{A}\right)\right) \longmapsto \dot{\alpha}_{G, H, K}^{*}\left(\dot{\mu}_{G \times H, K} \circ\left(\dot{\mu}_{G, H} \otimes_{R} \operatorname{Id}_{A(K)}\right)\right) \\
\mu \circ\left(\operatorname{Id}_{A} \otimes \mu\right) \longmapsto \dot{\mu}_{G, H \times K} \circ\left(\operatorname{Id}_{A(G)} \otimes \dot{\mu}_{H, K}\right)
\end{gathered}
$$

so the following hexagonal diagram commutes:

$$
\begin{aligned}
& A(G) \otimes_{R}\left(A(H) \otimes_{R} A(K)\right) \xrightarrow{\dot{\alpha}_{G, H, K}}\left(A(G) \otimes_{R} A(H)\right) \otimes_{R} A(K) \\
& \mathrm{Id}_{A(G)} \otimes_{R} \dot{\mu}_{H, K} \downarrow \quad \downarrow^{\dot{\mu}_{G, H} \otimes_{R} \mathrm{Id}_{A(K)}} \\
& A(G) \otimes_{R} A(H \times K) \quad A(G \times H) \otimes_{R} A(K) \\
& \dot{\mu}_{G, H \times K} \downarrow \quad \downarrow^{\dot{\mu}_{G \times H, K}} \\
& A(G \times(H \times K)) \xrightarrow[A\left(\operatorname{Iso}_{G \times(H \times K)}^{(G \times H) \times K}\right)]{ } A((G \times H) \times K)
\end{aligned}
$$

Morphism of Green biset functors

Definition

If (A, μ, e) and ($A^{\prime}, \mu^{\prime}, e^{\prime}$) are Green biset functors on \mathcal{D}, with values in R-Mod, a morphism of Green biset functors from A to A^{\prime} is a morphism $f: A \longrightarrow A^{\prime}$ in $\mathcal{F}_{\mathcal{D}, R}$ such that the diagrams

are commutative.

In other words, $f_{G \times H}(a \times b)=f_{G}(a) \times f_{H}(b)$ for any objects G, H of \mathcal{D}, and for any $a \in A(G)$ and $b \in A(H)$, and $f_{1}\left(e_{1}(\varepsilon)\right)=e_{1}^{\prime}(\varepsilon)$.

In other words, $f_{G \times H}(a \times b)=f_{G}(a) \times f_{H}(b)$ for any objects G, H of \mathcal{D}, and for any $a \in A(G)$ and $b \in A(H)$, and $f_{1}\left(\varepsilon_{A}\right)=\varepsilon_{A^{\prime}}$.

In other words, $f_{G \times H}(a \times b)=f_{G}(a) \times f_{H}(b)$ for any objects G, H of \mathcal{D}, and for any $a \in A(G)$ and $b \in A(H)$, and $f_{1}\left(\varepsilon_{A}\right)=\varepsilon_{A^{\prime}}$.

Morphisms of Green biset functors can be composed, so Green biset functors on \mathcal{D}, with values in R-Mod, form a category $\operatorname{Green}_{\mathcal{D}, R}$ or $\mathcal{F}_{\mathcal{D}, R}^{\mu}$.

Example 1

The Burnside functor B is a Green biset functor on C, with values in \mathbb{Z}-mod, for the bilinear product

$$
B(G) \times B(H) \longrightarrow B(G \times H)
$$

for G, H finite groups, defined by

$$
([X],[Y]) \longmapsto[X \times Y]
$$

The identity element is $1 \in B(\mathbf{1}) \cong \mathbb{Z}$.

Example 2

Let \mathbb{F} be a field of characteristic o. The functor $R_{\mathbb{F}}$ sending a finite group G to $R_{\mathbb{F}}(G)$ the representation group of G over \mathbb{F}, is a Green biset functor: If $[V] \in R_{\mathbb{F}}(G)$ and $[W] \in R_{\mathbb{F}}(H)$, their product is defined as the class of the external tensor product $\left[V \boxtimes_{\mathbb{F}} W\right] \in R_{\mathbb{F}}(G \times H)$.
The identity element is the class of the trivial module $[\mathbb{F}] \in R_{\mathbb{F}}(\mathbf{1})$.

Example 2

Let \mathbb{F} be a field of characteristic 0 . The functor $R_{\mathbb{F}}$ sending a finite group G to $R_{\mathbb{F}}(G)$ the representation group of G over \mathbb{F}, is a Green biset functor: If $[V] \in R_{\mathbb{F}}(G)$ and $[W] \in R_{\mathbb{F}}(H)$, their product is defined as the class of the external tensor product $\left[V \boxtimes_{\mathbb{F}} W\right] \in R_{\mathbb{F}}(G \times H)$.
The identity element is the class of the trivial module $[\mathbb{F}] \in R_{\mathbb{F}}(\mathbf{1})$.
The linearization morphism $\chi_{\mathbb{F}}: B \longrightarrow R_{\mathbb{F}}$ is a morphism of Green biset functors.

Module over a Green biset functor

Let A be a Green biset functor over \mathcal{D}, with values in R-Mod. A left A-module is an object M of $\mathcal{F}_{\mathcal{D}, R}$, equipped with a morphism of biset functors

$$
\mu_{M}: A \otimes M \longrightarrow M
$$

such that the following diagrams commute:
$A \otimes(A \otimes M) \xrightarrow{\mathrm{Id} \otimes \mu_{M}} A \otimes M$

$(A \otimes A) \otimes M \xrightarrow{\text { 略d }} A \otimes M$

Equivalently, for any objects G, H of \mathcal{D}, there are product maps $A(G) \times M(H) \longrightarrow M(G \times H)$, denoted by $(a, m) \longmapsto a \times m$, fulfilling the following conditions:

Equivalently, for any objects G, H of \mathcal{D}, there are product maps $A(G) \times M(H) \longrightarrow M(G \times H)$, denoted by $(a, m) \longmapsto a \times m$, fulfilling the following conditions:

- (Associativity) If $\alpha_{G, H, K}: G \times(H \times K) \longrightarrow(G \times H) \times K$ is the canonical group isomorphism, then for any $a \in A(G), b \in A(H)$, and $m \in M(K)$,

$$
(a \times b) \times m=M\left(\operatorname{Iso}\left(\alpha_{G, H, K}\right)\right)(a \times(b \times m))
$$

Equivalently, for any objects G, H of \mathcal{D}, there are product maps $A(G) \times M(H) \longrightarrow M(G \times H)$, denoted by $(a, m) \longmapsto a \times m$, fulfilling the following conditions:

- (Associativity) If $\alpha_{G, H, K}: G \times(H \times K) \longrightarrow(G \times H) \times K$ is the canonical group isomorphism, then for any $a \in A(G), b \in A(H)$, and $m \in M(K)$,

$$
(a \times b) \times m=M\left(\operatorname{Iso}\left(\alpha_{G, H, K}\right)\right)(a \times(b \times m))
$$

- (Identity element) Let $\lambda_{G}: \mathbf{1} \times G \longrightarrow G$ denote the canonical group isomorphism. Then for any $m \in M(G)$,

$$
m=M\left(\operatorname{Iso}\left(\lambda_{G}\right)\right)\left(\varepsilon_{A} \times m\right)
$$

Equivalently, for any objects G, H of \mathcal{D}, there are product maps $A(G) \times M(H) \longrightarrow M(G \times H)$, denoted by $(a, m) \longmapsto a \times m$, fulfilling the following conditions:

- (Associativity) If $\alpha_{G, H, K}: G \times(H \times K) \longrightarrow(G \times H) \times K$ is the canonical group isomorphism, then for any $a \in A(G), b \in A(H)$, and $m \in M(K)$,

$$
(a \times b) \times m=M\left(\operatorname{lso}\left(\alpha_{G, H, K}\right)\right)(a \times(b \times m))
$$

- (Identity element) Let $\lambda_{G}: \mathbf{1} \times G \longrightarrow G$ denote the canonical group isomorphism. Then for any $m \in M(G)$,

$$
m=M\left(\operatorname{Iso}\left(\lambda_{G}\right)\right)\left(\varepsilon_{A} \times m\right)
$$

- (Functoriality) If $\varphi: G \longrightarrow G^{\prime}$ and $\psi: H \longrightarrow H^{\prime}$ are morphisms in $R \mathcal{D}$, then for any $a \in A(G)$ and $m \in M(H)$,

$$
M(\varphi \times \psi)(a \times b)=A(\varphi)(a) \times M(\psi)(m)
$$

Example

Let X be a fixed object of \mathcal{D}. The functor A_{X} obtained by the Yoneda-Dress construction is a left A-module, for the product map induced by the product in A, namely, since $A_{x}(H)=A(H \times X)$,

$$
(a, m) \in A(G) \times A(H \times X) \mapsto a \times m \in A(G \times H \times X)=A_{X}(G \times H) .
$$

In particular, $A_{\mathbf{1}} \cong A$ is a left A-module.

Morphism of modules

If M and N are A-modules, then a morphism of A-modules from M to N is a morphism of biset functors $f: M \longrightarrow N$ such that the diagram

is commutative.

Morphism of modules

If M and N are A-modules, then a morphism of A-modules from M to N is a morphism of biset functors $f: M \longrightarrow N$ such that the diagram

is commutative.
In other words, $f_{G \times H}(a \times m)=a \times f_{H}(m)$, for any objects G, H of \mathcal{D}, any $a \in A(G)$ and any $m \in M(H)$.

Morphisms of A-modules can be composed, and A-modules form a category, denoted by A-Mod.

Morphisms of A-modules can be composed, and A-modules form a category, denoted by A-Mod.

Remark

The category A-Mod is an abelian category.

Submodules of an A-module

Let A be a Green biset functor and M be an A-module. An A-submodule of M is a subfunctor N of M such that the image of the morphism

$$
A(G) \times N(H) \longrightarrow M(G \times H)
$$

is contained in $N(G \times H)$.

Ideals of a Green biset functor

Let A be a Green biset functor on \mathcal{D}, with values in R-Mod. A left ideal of A is an A-submodule of the left A-module A.

Ideals of a Green biset functor

Let A be a Green biset functor on \mathcal{D}, with values in R-Mod. A left ideal of A is an A-submodule of the left A-module A.
In other words, it is a biset subfunctor I of A such that the image of the morphism

$$
A(G) \times I(H) \longrightarrow A(G \times H)
$$

is contained in $I(G \times H)$ for any objects G and H of \mathcal{D}.

A two sided ideal I of A is a biset subfunctor such that

$$
A(G) \times I(H) \times A(K) \subseteq I(G \times H \times K)
$$

for any objects G, H, K of \mathcal{D}.

A two sided ideal I of A is a biset subfunctor such that

$$
A(G) \times I(H) \times A(K) \subseteq I(G \times H \times K)
$$

for any objects $\mathcal{G}, \mathrm{H}, \mathrm{K}$ of \mathcal{D}.
When I is a two sided ideal of A, the quotient A / I is a Green biset functor. The projection morphism from A to A / I is a morphism of Green functors.

Simple Green biset functors

A Green biset functor A is called simple if its only two sided ideals are the zero subfunctor and A.

Simple Green biset functors

A Green biset functor A is called simple if its only two sided ideals are the zero subfunctor and A.

Example

Let k, \mathbb{F} be fields of characteristic 0 . Let \mathcal{D} be a replete subcategory of C, closed under direct products. Note that $k R_{\mathbb{F}}: k \mathcal{D} \longrightarrow k$-Mod is a Green biset functor.

Simple Green biset functors

A Green biset functor A is called simple if its only two sided ideals are the zero subfunctor and A.

Example

Let k, \mathbb{F} be fields of characteristic 0 . Let \mathcal{D} be a replete subcategory of C, closed under direct products. Note that $k R_{\mathbb{F}}: k \mathcal{D} \longrightarrow k$-Mod is a Green biset functor.

Let G be an object of \mathcal{D}. We define $\mathcal{I}\left(k R_{\mathbb{F}, G}\right)$ as the set of ideals of $k R_{\mathbb{F}, G}$ and $I(k, \mathbb{F}, G)$ as the set of primitive idempotents of $k R_{\mathbb{F}}(G)$.

Simple Green biset functors

A Green biset functor A is called simple if its only two sided ideals are the zero subfunctor and A.

Example

Let k, \mathbb{F} be fields of characteristic 0 . Let \mathcal{D} be a replete subcategory of C, closed under direct products. Note that $k R_{\mathbb{F}}: k \mathcal{D} \longrightarrow k$-Mod is a Green biset functor.

Let G be an object of \mathcal{D}. We define $\mathcal{I}\left(k R_{\mathbb{F}, G}\right)$ as the set of ideals of $k R_{\mathbb{F}, G}$ and $I(k, \mathbb{F}, G)$ as the set of primitive idempotents of $k R_{\mathbb{F}}(G)$.

It is stated (García, B., 2018) that there is a bijective correspondence between $I\left(k R_{\mathbb{F}, G}\right)$ and $2^{1(k, \mathbb{F}, G)}$.

Simple Green biset functors

A Green biset functor A is called simple if its only two sided ideals are the zero subfunctor and A.

Example

Let k, \mathbb{F} be fields of characteristic 0 . Let \mathcal{D} be a replete subcategory of C, closed under direct products. Note that $k R_{\mathbb{F}}: k \mathcal{D} \longrightarrow k$-Mod is a Green biset functor.

Let G be an object of \mathcal{D}. We define $\mathcal{I}\left(k R_{\mathbb{F}, G}\right)$ as the set of ideals of $k R_{\mathbb{F}, G}$ and $I(k, \mathbb{F}, G)$ as the set of primitive idempotents of $k R_{\mathbb{F}}(G)$.

It is stated (García, B., 2018) that there is a bijective correspondence between $I\left(k R_{\mathbb{F}, G}\right)$ and $2^{1(k, \mathbb{F}, G)}$.

In particular, if $G=1,\left|\mathcal{I}\left(k R_{\mathbb{F}}\right)\right|=2$, so $k R_{\mathbb{F}}$ is a simple Green biset functor.

Thank you!

