

Green Biset Functors

Topics in Representation Theory: Biset Functors

Itzel Rosas Martínez

June 27, 2023

I. Preliminaries

2. Green biset functors

3. Examples

4 • Modules over a Green biset functor

5. Ideals of a Green biset functor

Monoid object

Let $(\mathcal{M}, \otimes, \mathbf{1}, \alpha, \lambda, \rho)$ be a monoidal category. A *monoid* in \mathcal{M} is an object $m \in \mathcal{M}$ with morphisms

 $\mu: m \otimes m \longrightarrow m$

and

 $e: \mathbf{1} \longrightarrow m$

in ${\mathcal M}$ such that the following diagrams commute:

Example

In (R-Mod, \otimes , R, ...), monoid objects are the R-algebras.

Morphism of monoids

Let (m, μ, e) and (m', μ', e') be monoids in \mathcal{M} . A monoid morphism is a morphism $f : m \longrightarrow m'$ in \mathcal{M} such that the following diagrams commute:

Preliminaries

Green biset functors

Definition

A Green biset functor (on \mathcal{D} , with values in *R*-Mod) is a monoid object in the monoidal category $(\mathcal{F}_{\mathcal{D},R}, \otimes, RB, \ldots)$.

Green biset functors

Definition

A Green biset functor (on \mathcal{D} , with values in *R*-Mod) is a monoid object in the monoidal category $(\mathcal{F}_{\mathcal{D},R}, \otimes, RB, \ldots)$.

This means that a Green biset functor is an object A of $\mathcal{F}_{\mathcal{D},R}$, together with maps of biset functors

$$\mu : A \otimes A \longrightarrow A$$

and

$$e : RB \longrightarrow A$$

such that the following diagrams commute:

where α , λ and ρ are the isomorphisms afforded by Proposition 8.4.6.

• (Associativity) If $\alpha_{G,H,K} : G \times (H \times K) \longrightarrow (G \times H) \times K$ is the canonical group isomorphism, then for any $a \in A(G)$, $b \in A(H)$, and $c \in A(K)$,

$$(a \times b) \times c = A \left(Iso(\alpha_{G,H,K}) \right) (a \times (b \times c)).$$

• (Associativity) If $\alpha_{G,H,K} : G \times (H \times K) \longrightarrow (G \times H) \times K$ is the canonical group isomorphism, then for any $a \in A(G)$, $b \in A(H)$, and $c \in A(K)$,

$$(a \times b) \times c = A \left(\operatorname{Iso}(\alpha_{G,H,K}) \right) (a \times (b \times c)).$$

(Identity element) Let $\lambda_G : \mathbf{1} \times G \longrightarrow G$ and $\rho_G : G \times \mathbf{1} \longrightarrow G$ denote the canonical group isomorphisms. Then for any $a \in A(G)$,

$$\mathsf{A}\left(\mathsf{Iso}(\lambda_{\mathsf{G}})\right)(\varepsilon_{\mathsf{A}} \times a) = a = \mathsf{A}\left(\mathsf{Iso}(\rho_{\mathsf{G}})\right)(a \times \varepsilon_{\mathsf{A}}).$$

(Associativity) If $\alpha_{G,H,K} : G \times (H \times K) \longrightarrow (G \times H) \times K$ is the canonical group isomorphism, then for any $a \in A(G)$, $b \in A(H)$, and $c \in A(K)$,

$$(a \times b) \times c = A \left(\operatorname{Iso}(\alpha_{G,H,K}) \right) (a \times (b \times c)).$$

(Identity element) Let $\lambda_G : \mathbf{1} \times G \longrightarrow G$ and $\rho_G : G \times \mathbf{1} \longrightarrow G$ denote the canonical group isomorphisms. Then for any $a \in A(G)$,

$$A\left(\mathsf{Iso}(\lambda_{\mathsf{G}})\right)(\varepsilon_{\mathsf{A}} \times a) = a = A\left(\mathsf{Iso}(\rho_{\mathsf{G}})\right)(a \times \varepsilon_{\mathsf{A}}).$$

• (Functoriality) If $\varphi : G \longrightarrow G'$ and $\psi : H \longrightarrow H'$ are morphisms in $R\mathcal{D}$, then for any $a \in A(G)$ and $b \in A(H)$,

$$\mathsf{A}(\varphi \times \psi)(a \times b) = \mathsf{A}(\varphi)(a) \times \mathsf{A}(\psi)(b).$$

Proof

By the Universal Property of \otimes , we get

 $\operatorname{Hom}_{\mathcal{F}_{\mathcal{D},R}}(M \otimes N, P) \cong \operatorname{Hom}_{R\mathcal{D} \times R\mathcal{D}}(M(_) \otimes N(_), P(_ \times _))$

for all $M, N, P \in \mathcal{F}_{\mathcal{D},R}$. If M = N = P = A we have

 $\mathsf{Hom}_{\mathcal{F}_{\mathcal{D},R}}(\mathsf{A}\otimes\mathsf{A},\mathsf{A}) \rightarrowtail \mathsf{Hom}_{\mathcal{R}\mathcal{D}\times\mathcal{R}\mathcal{D}}(\mathsf{A}(_)\otimes\mathsf{A}(_),\mathsf{A}(_\times_))$

$$\mu\longmapsto \dot{\mu}$$

Note that $\dot{\mu}$ is natural, so if G, H, K, $L \in R\mathcal{D}$, $_{H}x_{G}$, $_{L}y_{K}$ morphisms in $R\mathcal{D}$, $a \in A(G)$, and $b \in A(H)$, the following diagram commutes:

$$\begin{array}{c} A(G) \otimes_{R} A(K) \xrightarrow{\dot{\mu}_{G,K}} A(G \times K) \\ A(x) \otimes A(y) \downarrow & \qquad \qquad \downarrow^{A(x \times y)} \\ A(H) \otimes_{R} A(L) \xrightarrow{\dot{\mu}_{H,L}} A(H \times L) \end{array}$$

If we denote $\dot{\mu}_{G,K}(a \otimes b) := a \times b$, we'll have

Therefore, we have functoriality.

Notice that $\dot{\mu}$ is a morphism in *R*-Mod, so it corresponds to a unique bilinear map, then we have the following commutative diagram:

$$\begin{array}{c} A(G) \times A(K) & \xrightarrow{\pi} A(G) \otimes_{R} A(K) & \xrightarrow{\mu_{G,K}} A(G \times K) \\ A(x) \times A(y) \downarrow & A(x) \otimes A(y) \downarrow & \downarrow A(x \times y) \\ A(H) \times A(L) & \xrightarrow{\pi} A(H) \otimes_{R} A(L) & \xrightarrow{\mu_{H,L}} A(H \times L) \end{array}$$

Let $\times := \dot{\mu} \circ \pi$, which is bilinear.

If we take $\varepsilon = [1/1] \in RB(1)$ and let x be a left G-set, notice that

 $x \cong x \times_1 \varepsilon$.

Consider $e : RB \longrightarrow A$, so $e_1 : RB(1) \cong R\varepsilon \longrightarrow A(1)$. We define

 $\varepsilon_{\mathsf{A}} := e_1(\varepsilon).$

We have the following commutative diagram:

By the bijective correspondence, we have

$$RB(_) \otimes_{R} A(_) \xrightarrow[i]{e \otimes 1_{A(_)}} A(_) \otimes_{R} A(_)$$

$$\downarrow \mu$$

$$A(_ \times _)$$

where $\check{\iota} : RB(_) \otimes_R A(_) \longrightarrow A(_ \times _)$ is such that $\forall G, H \in R\mathcal{D}$

$$\check{\iota}_{G,H} : RB(G) \otimes_R A(H) \longrightarrow A(G \times H)$$

 $x \otimes a \longmapsto A\left(({}_{G}x_{1} \times Id_{H}) \circ Iso_{H}^{1 \times H}\right)(a)$

This is a bilinear natural map.

With that definition, the following diagram commutes:

S0

Itzel Rosas Martínez

Green biset functors

If $\varepsilon_A \in A(\mathbf{1})$ is such that for every $G \in R\mathcal{D}$ and for every $a \in A(G)$,

$$\mathsf{A}(\mathsf{Iso}_{\mathbf{1}\times G}^{\mathsf{G}})(\varepsilon_{\mathsf{A}}\times a)=a=\mathsf{A}(\mathsf{Iso}_{\mathsf{G}\times \mathbf{1}}^{\mathsf{G}})(a\times \varepsilon_{\mathsf{A}}),$$

we have a bijective correspondence

Setting $e_1(\varepsilon) = \varepsilon_A$, we have a morphism $e : RB \longrightarrow A$.

Let $G, H \in R\mathcal{D}, x \in RB(G)$ and $a \in A(H)$. Note that

$$\dot{\mu}_{G,H}(e_G(x) \otimes a) = \dot{\mu}_{G,H} \left(A(x)(\varepsilon_A) \otimes A(\mathrm{Id}_H)(a) \right)$$
$$= A(x \times \mathrm{Id}_H) \dot{\mu}_{1,H}(\varepsilon_A \otimes a)$$
$$= A(x \times \mathrm{Id}_H) (\varepsilon_A \times a)$$
$$= A \left((x \times \mathrm{Id}_H) \circ \mathrm{Iso}_H^{1 \times H} \right) (a)$$
$$= \check{\iota}_{G,H}(x \otimes a)$$

Hence,

commutes. By naturality of the correspondence, the diagram

commutes.

We have $\alpha : A \otimes (A \otimes A) \longrightarrow (A \otimes A) \otimes A$ that can be corresponded to

$$\dot{\alpha}: \mathsf{A}(_) \otimes_{\mathsf{R}} (\mathsf{A}(_) \otimes_{\mathsf{R}} \mathsf{A}(_)) \longrightarrow (\mathsf{A}(_) \otimes_{\mathsf{R}} \mathsf{A}(_)) \otimes_{\mathsf{R}} \mathsf{A}(_).$$

We can check that for every $M, N, P, T \in \mathcal{F}_{\mathcal{D},R}$,

 $\begin{array}{l} \operatorname{Hom}\left(M\otimes\left(N\otimes P\right),T\right)\cong\operatorname{Hom}\left(M(_)\otimes_{R}\left(N(_)\otimes_{R}P(_)\right),T(_\times(_\times_))\right)(*) \\ \cong\operatorname{Hom}\left(\left(M(_)\otimes_{R}N(_)\right)\otimes_{R}P(_),T((_\times_)\times_)\right)(**) \end{array}$

We have $\alpha : A \otimes (A \otimes A) \longrightarrow (A \otimes A) \otimes A$ that can be corresponded to

$$\dot{\alpha}: \mathsf{A}(_) \otimes_{\mathsf{R}} (\mathsf{A}(_) \otimes_{\mathsf{R}} \mathsf{A}(_)) \longrightarrow (\mathsf{A}(_) \otimes_{\mathsf{R}} \mathsf{A}(_)) \otimes_{\mathsf{R}} \mathsf{A}(_).$$

We can check that for every $M, N, P, T \in \mathcal{F}_{\mathcal{D},R}$,

 $\begin{array}{l} \operatorname{Hom}\left(M\otimes\left(N\otimes P\right),T\right)\cong\operatorname{Hom}\left(M(_)\otimes_{R}\left(N(_)\otimes_{R}P(_)\right),T(_\times(_\times_))\right)(*) \\ \cong\operatorname{Hom}\left(\left(M(_)\otimes_{R}N(_)\right)\otimes_{R}P(_),T((_\times_)\times_)\right)(**) \end{array}$

Let
$$\sigma_{G,H,K} := T\left(Iso_{G\times(H\times K)}^{(G\times H)\times K}\right)$$
, then we have
(*) \longrightarrow (**)

 $\eta \longmapsto \sigma \circ \eta \circ \dot{\alpha}$

This is a natural isomorphism.

When M = N = P = T = A, we know that the following diagram commutes:

i.e., $\alpha^*(\mu \circ (\mu \otimes Id_A)) = \mu \circ (Id_A \otimes \mu).$

Itzel Rosas Martínez

Note that

 $\alpha^{*}(\mu \circ (\mu \otimes \mathsf{Id}_{\mathsf{A}})) \longmapsto \dot{\alpha}^{*}_{\mathsf{G},\mathsf{H},\mathsf{K}}(\dot{\mu}_{\mathsf{G}\times\mathsf{H},\mathsf{K}} \circ (\dot{\mu}_{\mathsf{G},\mathsf{H}} \otimes_{\mathsf{R}} \mathsf{Id}_{\mathsf{A}(\mathsf{K})}))$

 $\mu \circ (\mathsf{Id}_{\mathsf{A}} \otimes \mu) \longmapsto \dot{\mu}_{\mathsf{G},\mathsf{H} \times \mathsf{K}} \circ (\mathsf{Id}_{\mathsf{A}(\mathsf{G})} \otimes \dot{\mu}_{\mathsf{H},\mathsf{K}})$

so the following hexagonal diagram commutes:

Morphism of Green biset functors

Definition

If (A, μ, e) and (A', μ', e') are Green biset functors on \mathcal{D} , with values in *R*-Mod, a *morphism of Green biset functors* from *A* to *A'* is a morphism $f : A \longrightarrow A'$ in $\mathcal{F}_{\mathcal{D},R}$ such that the diagrams

are commutative.

In other words, $f_{G \times H}(a \times b) = f_G(a) \times f_H(b)$ for any objects G, H of \mathcal{D} , and for any $a \in A(G)$ and $b \in A(H)$, and $f_1(e_1(\varepsilon)) = e'_1(\varepsilon)$. In other words, $f_{G \times H}(a \times b) = f_G(a) \times f_H(b)$ for any objects G, H of \mathcal{D} , and for any $a \in A(G)$ and $b \in A(H)$, and $f_1(\varepsilon_A) = \varepsilon_{A'}$. In other words, $f_{G \times H}(a \times b) = f_G(a) \times f_H(b)$ for any objects G, H of \mathcal{D} , and for any $a \in A(G)$ and $b \in A(H)$, and $f_1(\varepsilon_A) = \varepsilon_{A'}$.

Morphisms of Green biset functors can be composed, so Green biset functors on \mathcal{D} , with values in *R*-Mod, form a category Green $_{\mathcal{D},R}$ or $\mathcal{F}_{\mathcal{D},R}^{\mu}$.

The Burnside functor *B* is a Green biset functor on *C*, with values in \mathbb{Z} -mod, for the bilinear product

$$B(G) \times B(H) \longrightarrow B(G \times H)$$

for G, H finite groups, defined by

$$([X], [Y]) \mapsto [X \times Y]$$

The identity element is $1 \in B(\mathbf{1}) \cong \mathbb{Z}$.

Example 2

Let \mathbb{F} be a field of characteristic o. The functor $R_{\mathbb{F}}$ sending a finite group G to $R_{\mathbb{F}}(G)$ the representation group of G over \mathbb{F} , is a Green biset functor: If $[V] \in R_{\mathbb{F}}(G)$ and $[W] \in R_{\mathbb{F}}(H)$, their product is defined as the class of the external tensor product $[V \boxtimes_{\mathbb{F}} W] \in R_{\mathbb{F}}(G \times H)$.

The identity element is the class of the trivial module $[\mathbb{F}] \in R_{\mathbb{F}}(\mathbf{1})$.

Example 2

Let \mathbb{F} be a field of characteristic o. The functor $R_{\mathbb{F}}$ sending a finite group G to $R_{\mathbb{F}}(G)$ the representation group of G over \mathbb{F} , is a Green biset functor: If $[V] \in R_{\mathbb{F}}(G)$ and $[W] \in R_{\mathbb{F}}(H)$, their product is defined as the class of the external tensor product $[V \boxtimes_{\mathbb{F}} W] \in R_{\mathbb{F}}(G \times H)$.

The identity element is the class of the trivial module $[\mathbb{F}] \in R_{\mathbb{F}}(\mathbf{1})$.

The linearization morphism $\chi_{\mathbb{F}} : B \longrightarrow R_{\mathbb{F}}$ is a morphism of Green biset functors.

Module over a Green biset functor

Let A be a Green biset functor over \mathcal{D} , with values in R-Mod. A *left* A-module is an object M of $\mathcal{F}_{\mathcal{D},\mathcal{R}}$, equipped with a morphism of biset functors

 $\mu_{\mathsf{M}} : \mathsf{A} \otimes \mathsf{M} \longrightarrow \mathsf{M}$

such that the following diagrams commute:

Equivalently, for any objects G, H of \mathcal{D} , there are product maps $A(G) \times M(H) \longrightarrow M(G \times H)$, denoted by $(a, m) \longmapsto a \times m$, fulfilling the following conditions: Equivalently, for any objects G, H of \mathcal{D} , there are product maps $A(G) \times M(H) \longrightarrow M(G \times H)$, denoted by $(a, m) \longmapsto a \times m$, fulfilling the following conditions:

• (Associativity) If $\alpha_{G,H,K} : G \times (H \times K) \longrightarrow (G \times H) \times K$ is the canonical group isomorphism, then for any $a \in A(G)$, $b \in A(H)$, and $m \in M(K)$,

$$(a \times b) \times m = M (Iso(\alpha_{G,H,K})) (a \times (b \times m)).$$

Equivalently, for any objects G, H of \mathcal{D} , there are product maps $A(G) \times M(H) \longrightarrow M(G \times H)$, denoted by $(a, m) \longmapsto a \times m$, fulfilling the following conditions:

• (Associativity) If $\alpha_{G,H,K} : G \times (H \times K) \longrightarrow (G \times H) \times K$ is the canonical group isomorphism, then for any $a \in A(G)$, $b \in A(H)$, and $m \in M(K)$,

$$(a \times b) \times m = M (Iso(\alpha_{G,H,K})) (a \times (b \times m)).$$

• (Identity element) Let $\lambda_G : \mathbf{1} \times G \longrightarrow G$ denote the canonical group isomorphism. Then for any $m \in M(G)$,

 $m = M (Iso(\lambda_G)) (\varepsilon_A \times m).$

Equivalently, for any objects G, H of \mathcal{D} , there are product maps $A(G) \times M(H) \longrightarrow M(G \times H)$, denoted by $(a, m) \longmapsto a \times m$, fulfilling the following conditions:

• (Associativity) If $\alpha_{G,H,K} : G \times (H \times K) \longrightarrow (G \times H) \times K$ is the canonical group isomorphism, then for any $a \in A(G)$, $b \in A(H)$, and $m \in M(K)$,

$$(a \times b) \times m = M (Iso(\alpha_{G,H,K})) (a \times (b \times m)).$$

• (Identity element) Let $\lambda_G : \mathbf{1} \times G \longrightarrow G$ denote the canonical group isomorphism. Then for any $m \in M(G)$,

$$m = M (Iso(\lambda_G)) (\varepsilon_A \times m).$$

• (Functoriality) If $\varphi : G \longrightarrow G'$ and $\psi : H \longrightarrow H'$ are morphisms in $R\mathcal{D}$, then for any $a \in A(G)$ and $m \in M(H)$,

$$\mathsf{M}(\varphi \times \psi)(a \times b) = \mathsf{A}(\varphi)(a) \times \mathsf{M}(\psi)(m).$$

Example

Let X be a fixed object of \mathcal{D} . The functor A_X obtained by the Yoneda-Dress construction is a left A-module, for the product map induced by the product in A, namely, since $A_X(H) = A(H \times X)$,

 $(a, m) \in A(G) \times A(H \times X) \mapsto a \times m \in A(G \times H \times X) = A_X(G \times H).$

In particular, $A_1 \cong A$ is a left A-module.

Morphism of modules

If *M* and *N* are *A*-modules, then a morphism of *A*-modules from *M* to *N* is a morphism of biset functors $f : M \longrightarrow N$ such that the diagram

is commutative.

Modules over a Green biset functor

Morphism of modules

If *M* and *N* are *A*-modules, then a morphism of *A*-modules from *M* to *N* is a morphism of biset functors $f : M \longrightarrow N$ such that the diagram

is commutative.

In other words, $f_{G \times H}(a \times m) = a \times f_H(m)$, for any objects G, H of \mathcal{D} , any $a \in A(G)$ and any $m \in M(H)$.

Morphisms of A-modules can be composed, and A-modules form a category, denoted by A-Mod.

Morphisms of A-modules can be composed, and A-modules form a category, denoted by A-Mod.

Remark

The category A-Mod is an abelian category.

Submodules of an A-module

Let A be a Green biset functor and M be an A-module. An A-submodule of M is a subfunctor N of M such that the image of the morphism

 $A(G) \times N(H) \longrightarrow M(G \times H)$

is contained in $N(G \times H)$.

Ideals of a Green biset functor

Let A be a Green biset functor on \mathcal{D} , with values in R-Mod. A *left ideal* of A is an A-submodule of the left A-module A.

Ideals of a Green biset functor

Let A be a Green biset functor on \mathcal{D} , with values in *R*-Mod. A *left ideal* of A is an A-submodule of the left A-module A. In other words, it is a biset subfunctor I of A such that the image of the morphism

 $A(G) \times I(H) \longrightarrow A(G \times H)$

is contained in $I(G \times H)$ for any objects G and H of \mathcal{D} .

A two sided ideal I of A is a biset subfunctor such that

 $A(G) \times I(H) \times A(K) \subseteq I(G \times H \times K)$

for any objects G, H, K of \mathcal{D} .

A two sided ideal I of A is a biset subfunctor such that

 $A(G) \times I(H) \times A(K) \subseteq I(G \times H \times K)$

for any objects G, H, K of \mathcal{D} .

When I is a two sided ideal of A, the quotient A/I is a Green biset functor. The projection morphism from A to A/I is a morphism of Green functors.

A Green biset functor A is called *simple* if its only two sided ideals are the zero subfunctor and A.

A Green biset functor A is called *simple* if its only two sided ideals are the zero subfunctor and A.

Example

Let k, \mathbb{F} be fields of characteristic O. Let \mathcal{D} be a replete subcategory of C, closed under direct products. Note that $kR_{\mathbb{F}} : k\mathcal{D} \longrightarrow k$ -Mod is a Green biset functor.

A Green biset functor A is called *simple* if its only two sided ideals are the zero subfunctor and A.

Example

Let k, \mathbb{F} be fields of characteristic O. Let \mathcal{D} be a replete subcategory of C, closed under direct products. Note that $kR_{\mathbb{F}} : k\mathcal{D} \longrightarrow k$ -Mod is a Green biset functor.

Let *G* be an object of \mathcal{D} . We define $\mathcal{I}(kR_{\mathbb{F},G})$ as the set of ideals of $kR_{\mathbb{F},G}$ and $I(k, \mathbb{F}, G)$ as the set of primitive idempotents of $kR_{\mathbb{F}}(G)$.

A Green biset functor A is called *simple* if its only two sided ideals are the zero subfunctor and A.

Example

Let k, \mathbb{F} be fields of characteristic O. Let \mathcal{D} be a replete subcategory of C, closed under direct products. Note that $kR_{\mathbb{F}} : k\mathcal{D} \longrightarrow k$ -Mod is a Green biset functor.

Let G be an object of \mathcal{D} . We define $\mathcal{I}(kR_{\mathbb{F},G})$ as the set of ideals of $kR_{\mathbb{F},G}$ and $I(k, \mathbb{F}, G)$ as the set of primitive idempotents of $kR_{\mathbb{F}}(G)$.

It is stated (García, B., 2018) that there is a bijective correspondence between $\mathcal{I}(kR_{\mathbb{F},G})$ and $2^{l(k,\mathbb{F},G)}$.

A Green biset functor A is called *simple* if its only two sided ideals are the zero subfunctor and A.

Example

Let k, \mathbb{F} be fields of characteristic O. Let \mathcal{D} be a replete subcategory of C, closed under direct products. Note that $kR_{\mathbb{F}} : k\mathcal{D} \longrightarrow k$ -Mod is a Green biset functor.

Let G be an object of \mathcal{D} . We define $\mathcal{I}(kR_{\mathbb{F},G})$ as the set of ideals of $kR_{\mathbb{F},G}$ and $I(k, \mathbb{F}, G)$ as the set of primitive idempotents of $kR_{\mathbb{F}}(G)$.

It is stated (García, B., 2018) that there is a bijective correspondence between $\mathcal{I}(kR_{\mathbb{F},G})$ and $2^{l(k,\mathbb{F},G)}$.

In particular, if G = 1, $|I(kR_F)| = 2$, so kR_F is a simple Green biset

functor.

Itzel Rosas Martinez

Thank you!