The Dade Group 12.1 & 12.2

Morelia, Michoacán

Jennifer Guerrero UC Santa Cruz

June 19th, 2023

Let p be a prime number, P be a p - group, and k be a field of characteristic p.

Definition

A permutation kP-module M is a kP-module that admits a P-invariant k-basis X. Equivalently, M is isomorphic to kX for some P-set X.

Note: Throughout this chapter, we will assume that all permutation *kP*-modules are finitely generated or equivalently finite-dimensional over *k*.

Let $M \cong kX$ be a permutation *kP*-module for some *P*-set *X*.

Let $M \cong kX$ be a permutation kP-module for some P-set X. Then

$$M \cong \bigoplus_{Q \leqslant P} a_Q k P / Q$$

Let $M \cong kX$ be a permutation kP-module for some P-set X. Then

$$M \cong \bigoplus_{Q \leqslant P} a_Q k P / Q$$

Now, kP - modules of the form kP/Q where Q is a subgroup of P are indecomposable with vertex Q.

Let $M \cong kX$ be a permutation kP-module for some P-set X. Then

$$M \cong \bigoplus_{Q \leqslant P} a_Q k P / Q$$

Now, kP - modules of the form kP/Q where Q is a subgroup of P are indecomposable with vertex Q.

Therefore any direct summand of a permutation *kP*-module is a permutation *kP*-module.

Let $M \cong kX$ be a permutation kP-module for some P-set X.

Then

$$M \cong \bigoplus_{Q \leqslant P} a_Q k P / Q$$

Now, kP - modules of the form kP/Q where Q is a subgroup of P are indecomposable with vertex Q.

Therefore any direct summand of a permutation *kP*-module is a permutation *kP*-module.

Also, by the Krull-Schmidt theorem, Y is another *P*-invariant *k*-bases of *M* then the *P*-sets *X* and *Y* are isomorphic.

Let $V \cong kX$ and $W \cong kY$ be permutation kP-modules for some P-sets X and Y. Then, $V \oplus W \cong k(X \sqcup Y)$

$$V \otimes_k W \cong k(X \times Y)$$

are permutation *kP*-modules.

Let $V \cong kX$ and $W \cong kY$ be permutation *kP*-modules for some *P*-sets *X* and *Y*. Then,

$$V \oplus W \cong k(X \sqcup Y)$$

and

$$V \otimes_k W \cong k(X \times Y)$$

are permutation *kP*-modules.

Remark

Let *P* and *Q* be *p*-groups, and *U* be a finite (Q, P)-biset. If *V* is a permutation *kP*-module, with *P*-invariant *k* basis *X*, then

 $kU \otimes_{kP} V \cong k(U \times_P X)$

and is hence a permutation *kQ*-module.

Let $V \cong kX$ and $W \cong kY$ be permutation *kP*-modules for some *P*-sets *X* and *Y*. Then,

$$V \oplus W \cong k(X \sqcup Y)$$

and

$$V \otimes_k W \cong k(X \times Y)$$

are permutation kP-modules.

Remark

Let *P* and *Q* be *p*-groups, and *U* be a finite (Q, P)-biset. If *V* is a permutation *kP*-module, with *P*-invariant *k* basis *X*, then

 $kU \otimes_{kP} V \cong k(U \times_P X)$

and is hence a permutation *kQ*-module.

Therefore, the class of permutation modules is closed under the usual biset operations on modules, namely induction, restriction, inflation, and deflation.

Jennifer (UC Santa Cruz)

The Brauer Quotient

Let k be a field, and P be a group.

Definition

If *V* is a *kP*-module, and $Q \leq P$, the Brauer quotient V[Q] of *V* at *Q* is the $kN_P(Q)/Q$ -module defined by

$$V[Q] = V^Q / \sum_{S < Q} tr_S^Q V^S,$$

where $tr_S^Q: V^S \to V^Q$ is the trace map $v \mapsto \sum_{x \in Q/S} xv$.

The Brauer Quotient

Let k be a field, and P be a group.

Definition

If *V* is a *kP*-module, and $Q \leq P$, the Brauer quotient V[Q] of *V* at *Q* is the $kN_P(Q)/Q$ -module defined by

$$V[Q] = V^Q / \sum_{S < Q} tr_S^Q V^S,$$

where $tr_S^Q: V^S \to V^Q$ is the trace map $v \mapsto \sum_{x \in Q/S} xv$.

Remark

The correspondence $V \mapsto V[Q]$ is a functor from kP-mod to $kN_P(Q)/Q$ -mod, denoted by Br_O^p (or Br_Q is P is clear from context).

The Brauer Quotient

Let k be a field, and P be a group.

Definition

If *V* is a *kP*-module, and $Q \leq P$, the Brauer quotient V[Q] of *V* at *Q* is the $kN_P(Q)/Q$ -module defined by

$$V[Q] = V^Q / \sum_{S < Q} tr_S^Q V^S,$$

where $tr_S^Q: V^S \to V^Q$ is the trace map $v \mapsto \sum_{x \in Q/S} xv$.

Remark

The correspondence $V \mapsto V[Q]$ is a functor from *kP*-mod to $kN_P(Q)/Q$ -mod, denoted by Br_Q^P (or Br_Q is *P* is clear from context).

Remark

When $V \cong kX$ is a permutation *kP*-module, where *X* is some *P*-set, the image of the set X^Q in V[Q] is a *k*-basis of V[Q] and V[Q] is a permutation $kN_P(Q)/Q$ -module.

Jennifer (UC Santa Cruz)

A *P*-algebra over k is a (finite-dimensional unital) k-algebra endowed with an action of *P* by algebra automorphisms.

A *P*-algebra over k is a (finite-dimensional unital) k-algebra endowed with an action of *P* by algebra automorphisms.

A permutation *P*-algebra over *k* is a *P*-algebra over *k*, which is a permutation *kP*-module.

A *P*-algebra over k is a (finite-dimensional unital) k-algebra endowed with an action of *P* by algebra automorphisms.

A permutation *P*-algebra over *k* is a *P*-algebra over *k*, which is a permutation *kP*-module.

Defintion

A *P*-algebra *A* is called <u>primitive</u> if the identity element 1_A is a primitive idempotent of the algebra A^P .

If *A* is a *P*-algebra over *k*, and if $Q \leq P$, then $\sum_{S < Q} tr_S^Q A^S$ is a two-sided ideal of A^Q , so A[Q] is a $N_P(Q)/Q$ -algebra over *k*.

If *A* is a *P*-algebra over *k*, and if $Q \leq P$, then $\sum_{x \in C} tr_S^Q A^S$ is a two-sided ideal of A^Q , $S \le O$ so A[Q] is a $N_P(Q)/Q$ -algebra over k. Furthermore, if A is a permutation P-algebra, then A[Q] is a permutation $N_P(Q)/Q$ -algebra.

If *A* is a *P*-algebra over *k*, and if $Q \leq P$, then $\sum_{S < Q} tr_S^Q A^S$ is a two-sided ideal of A^Q ,

so A[Q] is a $N_P(Q)/Q$ -algebra over k. Furthermore, if A is a permutation P-algebra, then A[Q] is a permutation $N_P(Q)/Q$ -algebra.

Remark

If *A* is a permutation *P*-algebra over *k* with *P*-invariant basis *X*, and if $Q \leq P$, then the natural bijection

 $(X^{\mathbb{Q}})^{P/\mathbb{Q}} \cong X^{P}$ induces an algebra isomorphism $A[\mathbb{Q}][P/\mathbb{Q}] \to A[P]$.

Let *k* be a field of characteristic p > 0, and *P* be a *p*-group.

A finitely generated *kP*-module *M* is called an endo-permutation module if the *kP*-module $End_k(M)$ is a permutation module.

Let *k* be a field of characteristic p > 0, and *P* be a *p*-group.

A finitely generated *kP*-module *M* is called an endo-permutation module if the *kP*-module $End_k(M)$ is a permutation module.

Remark

In this definition, the action of *P* on $End_k(M)$ is given by

$$(xf)(m) = xf(x^{-1}m)$$

for $x \in P$, $f \in End_k(M)$, and $m \in M$.

Let *k* be a field of characteristic p > 0, and *P* be a *p*-group.

A finitely generated *kP*-module *M* is called an endo-permutation module if the *kP*-module $End_k(M)$ is a permutation module.

Remark

In this definition, the action of *P* on $End_k(M)$ is given by

$$(xf)(m) = xf(x^{-1}m)$$

for $x \in P$, $f \in End_k(M)$, and $m \in M$.

Example

All permutation *kP*-modules are endo-permutation modules.

Jennifer (UC Santa Cruz)

Example

If *M* is an endo-permutation *kP*-module, then its *k*-dual $M^* = Hom_k(M, k)$ is also an endo-permutation *kP*-module since $End_k(M^*) \cong M \otimes_k M^* \cong End_k(M)$ as *M* is finite dimensional over *k*.

Example

If *M* is an endo-permutation *kP*-module, then its *k*-dual $M^* = Hom_k(M, k)$ is also an endo-permutation *kP*-module since $End_k(M^*) \cong M \otimes_k M^* \cong End_k(M)$ as *M* is finite dimensional over *k*.

Example

Any direct summand M' of an endo-permutation kP-module M is an endo-permutation kP-module since $M' \otimes_k M'^*$ is a direct summand of $M \otimes_k M^*$.

Example

If *M* is an endo-permutation *kP*-module, then its *k*-dual $M^* = Hom_k(M, k)$ is also an endo-permutation *kP*-module since $End_k(M^*) \cong M \otimes_k M^* \cong End_k(M)$ as *M* is finite dimensional over *k*.

Example

Any direct summand M' of an endo-permutation kP-module M is an endo-permutation kP-module since $M' \otimes_k M'^*$ is a direct summand of $M \otimes_k M^*$.

Example, (J.L. Alperin, 2000)

Let X be a nonempty finite *P*-set. Let $\varepsilon_X : kX \to k$ be the augmentation map, defined by $\varepsilon_X(x) = 1$, for $x \in X$.

Example

If *M* is an endo-permutation *kP*-module, then its *k*-dual $M^* = Hom_k(M, k)$ is also an endo-permutation *kP*-module since $End_k(M^*) \cong M \otimes_k M^* \cong End_k(M)$ as *M* is finite dimensional over *k*.

Example

Any direct summand M' of an endo-permutation kP-module M is an endo-permutation kP-module since $M' \otimes_k M'^*$ is a direct summand of $M \otimes_k M^*$.

Example, (J.L. Alperin, 2000)

Let *X* be a nonempty finite *P*-set. Let $\varepsilon_X : kX \to k$ be the augmentation map, defined by $\varepsilon_X(x) = 1$, for $x \in X$. The kernel $\Omega_X(k)$ of ε_X is called the relative syzygy of the trivial module with respect to *X*.

Example

If *M* is an endo-permutation *kP*-module, then its *k*-dual $M^* = Hom_k(M, k)$ is also an endo-permutation *kP*-module since $End_k(M^*) \cong M \otimes_k M^* \cong End_k(M)$ as *M* is finite dimensional over *k*.

Example

Any direct summand M' of an endo-permutation kP-module M is an endo-permutation kP-module since $M' \otimes_k M'^*$ is a direct summand of $M \otimes_k M^*$.

Example, (J.L. Alperin, 2000)

Let *X* be a nonempty finite *P*-set. Let $\varepsilon_X : kX \to k$ be the augmentation map, defined by $\varepsilon_X(x) = 1$, for $x \in X$. The kernel $\Omega_X(k)$ of ε_X is called the relative syzygy of the trivial module with respect to *X*.

Therefore, there is a short exact sequence:

$$0 \longrightarrow \Omega_X(k) \longrightarrow kX \longrightarrow k \longrightarrow 0.$$

 $\Omega_X(k)$ is an endo-permutation module.

If *M* and *N* are endo-permutation *kP*-modules, then so is $M \otimes_k N$, since $(M \otimes_k N) \otimes (M \otimes N)^* \cong (M \otimes_k M^*) \otimes_k (N \otimes_k N^*)$ is a permutation *kP*-module.

If *M* and *N* are endo-permutation *kP*-modules, then so is $M \otimes_k N$, since $(M \otimes_k N) \otimes (M \otimes N)^* \cong (M \otimes_k M^*) \otimes_k (N \otimes_k N^*)$

is a permutation *kP*-module.

Example

If *M* and *N* are endo-permutation *kP*-modules, then

 $(M \oplus N) \otimes_k (M \oplus N)^* \cong (M \otimes_k M^*) \oplus (M \otimes_k N^*) \oplus (N \otimes_k M^*) \oplus (N \otimes_k N^*)$

If *M* and *N* are endo-permutation *kP*-modules, then so is $M \otimes_k N$, since $(M \otimes_k N) \otimes (M \otimes N)^* \cong (M \otimes_k M^*) \otimes_k (N \otimes_k N^*)$

is a permutation *kP*-module.

Example

If *M* and *N* are endo-permutation *kP*-modules, then

 $(M \oplus N) \otimes_k (M \oplus N)^* \cong (M \otimes_k M^*) \oplus (M \otimes_k N^*) \oplus (N \otimes_k M^*) \oplus (N \otimes_k N^*)$

Therefore, if $M \oplus N$ is an endo-permutation kP-module, then $M \otimes_k N^*$ is a permutation kP-module.

If *M* and *N* are endo-permutation *kP*-modules, then so is $M \otimes_k N$, since $(M \otimes_k N) \otimes (M \otimes N)^* \cong (M \otimes_k M^*) \otimes_k (N \otimes_k N^*)$

is a permutation *kP*-module.

Example

If *M* and *N* are endo-permutation *kP*-modules, then

 $(M \oplus N) \otimes_k (M \oplus N)^* \cong (M \otimes_k M^*) \oplus (M \otimes_k N^*) \oplus (N \otimes_k M^*) \oplus (N \otimes_k N^*)$

Therefore, if $M \oplus N$ is an endo-permutation *kP*-module, then $M \otimes_k N^*$ is a permutation *kP*-module.

Conversely, if $M \otimes_k N^*$ is a permutation kP-module, then $N \otimes_k M^* \cong (M \otimes_k N^*)^*$ is a permutation module, and $M \oplus N$ is an endo-permutation kP-module.

Let *k* be a field of characteristic p > 0 and *P* be a p-group.

Definition

Two endo-permutation *kP*-modules *M* and *N* are said to be compatible (which is denoted by $M \sim N$) if $M \oplus N$ is an endo-permutation *kP*-module, or, equivalently, if $M \otimes_k N^*$ is a permutation *kP*-module.

Let *k* be a field of characteristic p > 0 and *P* be a p-group.

Definition

Two endo-permutation *kP*-modules *M* and *N* are said to be compatible (which is denoted by $M \sim N$) if $M \oplus N$ is an endo-permutation *kP*-module, or, equivalently, if $M \otimes_k N^*$ is a permutation *kP*-module.

Definition

An endo-permutation kP-module M is said to be <u>capped</u> if it admits an indecomposable summand with vertex P.

Lemma 12.2.6

Lemma 12.2.6

Let *k* be a field of characteristic p > 0, *P* be a *p*-group, and *M* be an endo-permutation *kP*-module.

The following are equivalent:

- 1) The module *M* is capped.
- 2) The Brauer quotient $End_k(M)[P]$ is non-zero.
- 3) The trivial module *k* appears as a direct summand of the *kP*-module $End_k(M) \cong M \otimes_k M^*$.

Lemma 12.2.6

Lemma 12.2.6

Let *k* be a field of characteristic p > 0, *P* be a *p*-group, and *M* be an endo-permutation *kP*-module.

The following are equivalent:

- 1) The module *M* is capped.
- 2) The Brauer quotient $End_k(M)[P]$ is non-zero.
- 3) The trivial module *k* appears as a direct summand of the *kP*-module $End_k(M) \cong M \otimes_k M^*$.

$2 \iff 3$:

M is an endo-permutation *kP*-module, so

$$End_k(M) \cong \bigoplus_{Q \leqslant P} a_Q kP/Q.$$

Lemma 12.2.6

Lemma 12.2.6

Let *k* be a field of characteristic p > 0, *P* be a *p*-group, and *M* be an endo-permutation *kP*-module.

The following are equivalent:

- 1) The module *M* is capped.
- 2) The Brauer quotient $End_k(M)[P]$ is non-zero.
- 3) The trivial module *k* appears as a direct summand of the *kP*-module $End_k(M) \cong M \otimes_k M^*$.

$2 \iff 3$:

M is an endo-permutation *kP*-module, so

$$End_k(M) \cong \bigoplus_{Q \leqslant P} a_Q kP/Q.$$

Now for each $Q \leq P$, kP/Q is a permutation module with vertex Q.

Lemma 12.2.6

Let *k* be a field of characteristic p > 0, *P* be a *p*-group, and *M* be an endo-permutation *kP*-module.

The following are equivalent:

- 1) The module *M* is capped.
- 2) The Brauer quotient $End_k(M)[P]$ is non-zero.
- 3) The trivial module *k* appears as a direct summand of the *kP*-module $End_k(M) \cong M \otimes_k M^*$.

$2 \iff 3$:

M is an endo-permutation *kP*-module, so

$$End_k(M) \cong \bigoplus_{Q \leqslant P} a_Q kP/Q.$$

Now for each $Q \leq P$, kP/Q is a permutation module with vertex Q. Recall if N is an indecomposable permutation kP-module with vertex Q and $R \leq P$, then $N[R] \neq 0$ if $R \leq_P Q$ and N[R] = 0 otherwise.

Lemma 12.2.6

Let *k* be a field of characteristic p > 0, *P* be a *p*-group, and *M* be an endo-permutation *kP*-module.

The following are equivalent:

- 1) The module *M* is capped.
- 2) The Brauer quotient $End_k(M)[P]$ is non-zero.
- 3) The trivial module *k* appears as a direct summand of the *kP*-module $End_k(M) \cong M \otimes_k M^*$.

$2 \iff 3$:

M is an endo-permutation *kP*-module, so

$$End_k(M) \cong \bigoplus_{Q \leqslant P} a_Q kP/Q.$$

Now for each $Q \leq P$, kP/Q is a permutation module with vertex Q. Recall if N is an indecomposable permutation kP-module with vertex Q and $R \leq P$, then $N[R] \neq 0$ if $R \leq_P Q$ and N[R] = 0 otherwise. Therefore, $End_k(M)[P] \neq 0$ iff k is an indecomposable summand of $End_k(M)$

Let *k* be a field of characteristic p > 0 and *P* be a *p*-group. If *M* is a capped endo-permutation module, so is M^* . If *M* and *N* are capped endo-permutation *kP*-modules, so is $M \otimes_k N$.

Let *k* be a field of characteristic p > 0 and *P* be a *p*-group. If *M* is a capped endo-permutation module, so is M^* . If *M* and *N* are capped endo-permutation *kP*-modules, so is $M \otimes_k N$.

Proof: The first claim follows from Lemma 12.2.6 since

 $End_k(M) \cong M \otimes_k M^* \cong End_k(M^*).$

Let *k* be a field of characteristic p > 0 and *P* be a *p*-group. If *M* is a capped endo-permutation module, so is M^* . If *M* and *N* are capped endo-permutation *kP*-modules, so is $M \otimes_k N$.

Proof: The first claim follows from Lemma 12.2.6 since

 $End_k(M) \cong M \otimes_k M^* \cong End_k(M^*).$

Suppose that *M* and *N* are both capped endo-permutation *kP*-modules. Now,

 $(M \otimes_k N) \otimes_k (M \otimes_k N)^* \cong (M \otimes_k M^*) \otimes_k (N \otimes_k N^*)$

has a direct summand isomorphic to k since both $M \otimes_k M^*$ and $N \otimes_k N^*$ have one.

Let *k* be a field of characteristic p > 0 and *P* be *p*-group.

1) The relation \sim is an equivalence relation on the class of capped endo-permutation *kP*-modules. Let $D_k(P)$ denote the set of equivalence classes for this relation.

Let *k* be a field of characteristic p > 0 and *P* be *p*-group.

- 1) The relation \sim is an equivalence relation on the class of capped endo-permutation kP-modules. Let $D_k(P)$ denote the set of equivalence classes for this relation.
- 2) Let *M* and *N* be capped endo-permutation *kP*-modules. Then $M \sim N$ if and only if $M^* \sim N^*$.

Let *k* be a field of characteristic p > 0 and *P* be *p*-group.

- 1) The relation \sim is an equivalence relation on the class of capped endo-permutation kP-modules. Let $D_k(P)$ denote the set of equivalence classes for this relation.
- 2) Let *M* and *N* be capped endo-permutation *kP*-modules. Then $M \sim N$ if and only if $M^* \sim N^*$.
- 3) If M, N, M', and N' are capped endo-permutation kP-modules such that $M \sim N$ and $M' \sim N'$, then $M \otimes_k M' \sim N \otimes_k N'$.

Let *k* be a field of characteristic p > 0 and *P* be *p*-group.

- 1) The relation \sim is an equivalence relation on the class of capped endo-permutation kP-modules. Let $D_k(P)$ denote the set of equivalence classes for this relation.
- 2) Let *M* and *N* be capped endo-permutation *kP*-modules. Then $M \sim N$ if and only if $M^* \sim N^*$.
- 3) If M, N, M', and N' are capped endo-permutation kP-modules such that $M \sim N$ and $M' \sim N'$, then $M \otimes_k M' \sim N \otimes_k N'$.
- 4) The tensor product of modules induces an addition on $D_k(P)$, defined by

$$[M] + [N] = [M \otimes_k N],$$

where [M] denotes the equivalence class of the capped endo-permutation kP-module M. Then $D_k(P)$ is an Abelian group for this addition law, called the Dade group of P over k. The zero element of $D_k(P)$ is the class [k] of the trivial module, and the opposite of the class of M is the class of M^* .

Assertion 1: Reflexivity and Symmetry follow from the definitions.

Assertion 1: Reflexivity and Symmetry follow from the definitions. Suppose that M,N, and L are capped endo-permutation kP-modules such that $M \sim N$ and $N \sim L$.

Assertion 1: Reflexivity and Symmetry follow from the definitions. Suppose that *M*,*N*, and *L* are capped endo-permutation *kP*-modules such that $M \sim N$ and $N \sim L$. Then $M \otimes_k N^*$ and $N \otimes_k L^*$ are both permutation *kP*-modules.

Assertion 1: Reflexivity and Symmetry follow from the definitions. Suppose that M,N, and L are capped endo-permutation kP-modules such that $M \sim N$ and $N \sim L$. Then $M \otimes_k N^*$ and $N \otimes_k L^*$ are both permutation kP-modules. Therefore, $T = (M \otimes_k N^*) \otimes_k (N \otimes_k L^*) \cong M \otimes_k (N \otimes_k N^*) \otimes_k L^*$ is a permutation kP-module.

Assertion 1: Reflexivity and Symmetry follow from the definitions. Suppose that M,N, and L are capped endo-permutation kP-modules such that $M \sim N$ and $N \sim L$. Then $M \otimes_k N^*$ and $N \otimes_k L^*$ are both permutation kP-modules. Therefore, $T = (M \otimes_k N^*) \otimes_k (N \otimes_k L^*) \cong M \otimes_k (N \otimes_k N^*) \otimes_k L^*$ is a permutation kP-module. Now, k is a direct summand of $N^* \otimes N$.

Assertion 1: Reflexivity and Symmetry follow from the definitions. Suppose that M,N, and L are capped endo-permutation kP-modules such that $M \sim N$ and $N \sim L$. Then $M \otimes_k N^*$ and $N \otimes_k L^*$ are both permutation kP-modules. Therefore, $T = (M \otimes_k N^*) \otimes_k (N \otimes_k L^*) \cong M \otimes_k (N \otimes_k N^*) \otimes_k L^*$ is a permutation kP-module. Now, k is a direct summand of $N^* \otimes N$. Therefore, $M \otimes_k L^*$ is a direct summand of T and is hence a permutation kP-module. Therefore, $M \sim L$.

Assertion 1: Reflexivity and Symmetry follow from the definitions. Suppose that M,N, and L are capped endo-permutation kP-modules such that $M \sim N$ and $N \sim L$. Then $M \otimes_k N^*$ and $N \otimes_k L^*$ are both permutation kP-modules. Therefore, $T = (M \otimes_k N^*) \otimes_k (N \otimes_k L^*) \cong M \otimes_k (N \otimes_k N^*) \otimes_k L^*$ is a permutation kP-module. Now, k is a direct summand of $N^* \otimes N$. Therefore, $M \otimes_k L^*$ is a direct summand of T and is hence a permutation kP-module. Therefore, $M \sim L$.

Assertion 2: Follows from

$$(M \oplus N)^* \cong M^* \oplus N^*$$

and the dual of an endo-permutation kP-module is an endo-permutation kP-module.

Assertion 1: Reflexivity and Symmetry follow from the definitions. Suppose that M,N, and L are capped endo-permutation kP-modules such that $M \sim N$ and $N \sim L$. Then $M \otimes_k N^*$ and $N \otimes_k L^*$ are both permutation kP-modules. Therefore, $T = (M \otimes_k N^*) \otimes_k (N \otimes_k L^*) \cong M \otimes_k (N \otimes_k N^*) \otimes_k L^*$ is a permutation kP-module. Now, k is a direct summand of $N^* \otimes N$. Therefore, $M \otimes_k L^*$ is a direct summand of T and is hence a permutation kP-module. Therefore, $M \sim L$.

Assertion 2: Follows from

$$(M\oplus N)^*\cong M^*\oplus N^*$$

and the dual of an endo-permutation kP-module is an endo-permutation kP-module.

Assertion 3: Follows from

$$(M \otimes_k N) \otimes_k (M' \otimes_k N')^* \cong (M \otimes_k M'^*) \otimes_k (N \otimes_k N'^*)$$

and the tensor product of two permutation *kP*-modules is a permutation *kP*-module.

Jennifer (UC Santa Cruz)

[*k*] is the zero element of $D_k(P)$ since $M \otimes_k k \cong M$ for each *kP*-module *M*.

[*k*] is the zero element of $D_k(P)$ since $M \otimes_k k \cong M$ for each *kP*-module *M*.

Note that [k] consists of all capped endo-permutation modules such that k is an indecomposable summand.

[*k*] is the zero element of $D_k(P)$ since $M \otimes_k k \cong M$ for each *kP*-module *M*.

Note that [k] consists of all capped endo-permutation modules such that k is an indecomposable summand.

Therefore, for each capped endo-permutation module M, the module $M \otimes_k M^*$ is in the equivalence class [k] and hence $[M] + [M^*] = [k]$.

Lemma 12.2.9 [Dade]

Let *k* be a field of characteristic p > 0, let *P* be a *p*-group, and let *M* be a capped endo-permutation *kP*-module.

1) If *V* is a capped indecomposable endo-permutation *kP*-module, then $V \sim M$ if and only if *V* is isomorphic to a direct summand of *M*.

Lemma 12.2.9 [Dade]

Let *k* be a field of characteristic p > 0, let *P* be a *p*-group, and let *M* be a capped endo-permutation *kP*-module.

- 1) If *V* is a capped indecomposable endo-permutation *kP*-module, then $V \sim M$ if and only if *V* is isomorphic to a direct summand of *M*.
- 2) In particular, if *V* and *W* are indecomposable summands of *M* with vertex *P*, then $V \cong W$.

Definition

Let *k* be a field of characteristic p > 0, and *P* be a *p*-group. If *M* is a capped endo-permutation *kP*-module, a cap of *M* is an indecomposable summand of *M* with vertex *P*.

Definition

Let *k* be a field of characteristic p > 0, and *P* be a *p*-group. If *M* is a capped endo-permutation *kP*-module, a cap of *M* is an indecomposable summand of *M* with vertex *P*.

Remark

By Lemma 12.2.9, the cap of a capped endo-permutation *kP*-module is unique, up to isomorphism, and two capped endo-permutation *kP*-modules are compatible if and only if they have isomorphic caps.

Definition

Let *k* be a field of characteristic p > 0, and *P* be a *p*-group. If *M* is a capped endo-permutation *kP*-module, a cap of *M* is an indecomposable summand of *M* with vertex *P*.

Remark

By Lemma 12.2.9, the cap of a capped endo-permutation *kP*-module is unique, up to isomorphism, and two capped endo-permutation *kP*-modules are compatible if and only if they have isomorphic caps.

This means that $D_k(P)$ is the set of isomorphism classes of capped indecomposable endo-permutation kP-modules.