The Dade Group 12.1 \& 12.2

Morelia, Michoacán

Jennifer Guerrero
UC Santa Cruz

June 19th, 2023

12.1 Permutation Modules and Algebras

Let p be a prime number, P be a p-group, and k be a field of characteristic p.

Definition

A permutation $k P$-module M is a $k P$-module that admits a P-invariant k-basis X. Equivalently, M is isomorphic to $k X$ for some P-set X.

Note: Throughout this chapter, we will assume that all permutation $k P$-modules are finitely generated or equivalently finite-dimensional over k.

Permutation Modules

Let $M \cong k X$ be a permutation $k P$-module for some P-set X.

Permutation Modules

Let $M \cong k X$ be a permutation $k P$-module for some P-set X. Then

$$
M \cong \bigoplus_{Q \leqslant P} a_{Q} k P / Q
$$

Permutation Modules

Let $M \cong k X$ be a permutation $k P$-module for some P-set X.
Then

$$
M \cong \bigoplus_{Q \leqslant P} a_{Q} k P / Q
$$

Now, $k P$ - modules of the form $k P / Q$ where Q is a subgroup of P are indecomposable with vertex Q.

Permutation Modules

Let $M \cong k X$ be a permutation $k P$-module for some P-set X.
Then

$$
M \cong \bigoplus_{Q \leqslant P} a_{Q} k P / Q
$$

Now, $k P$ - modules of the form $k P / Q$ where Q is a subgroup of P are indecomposable with vertex Q.
Therefore any direct summand of a permutation $k P$-module is a permutation $k P$-module.

Permutation Modules

Let $M \cong k X$ be a permutation $k P$-module for some P-set X.
Then

$$
M \cong \bigoplus_{Q \leqslant P} a_{Q} k P / Q
$$

Now, $k P$ - modules of the form $k P / Q$ where Q is a subgroup of P are indecomposable with vertex Q.
Therefore any direct summand of a permutation $k P$-module is a permutation $k P$-module.

Also, by the Krull-Schmidt theorem, Y is another P-invariant k-bases of M then the P-sets X and Y are isomorphic.

Permutation Modules

Remark

Let $V \cong k X$ and $W \cong k Y$ be permutation $k P$-modules for some P-sets X and Y. Then,

$$
V \oplus W \cong k(X \sqcup Y)
$$

and

$$
V \otimes_{k} W \cong k(X \times Y)
$$

are permutation $k P$-modules.

Permutation Modules

Remark

Let $V \cong k X$ and $W \cong k Y$ be permutation $k P$-modules for some P-sets X and Y. Then,

$$
V \oplus W \cong k(X \sqcup Y)
$$

and

$$
V \otimes_{k} W \cong k(X \times Y)
$$

are permutation $k P$-modules.

Remark

Let P and Q be p-groups, and U be a finite (Q, P)-biset. If V is a permutation $k P$-module, with P-invariant k basis X, then

$$
k U \otimes_{k P} V \cong k\left(U \times_{P} X\right)
$$

and is hence a permutation $k Q$-module.

Permutation Modules

Remark

Let $V \cong k X$ and $W \cong k Y$ be permutation $k P$-modules for some P-sets X and Y. Then,

$$
V \oplus W \cong k(X \sqcup Y)
$$

and

$$
V \otimes_{k} W \cong k(X \times Y)
$$

are permutation $k P$-modules.

Remark

Let P and Q be p-groups, and U be a finite (Q, P)-biset.
If V is a permutation $k P$-module, with P-invariant k basis X, then

$$
k U \otimes_{k P} V \cong k\left(U \times_{P} X\right)
$$

and is hence a permutation $k Q$-module.

Therefore, the class of permutation modules is closed under the usual biset operations on modules, namely induction, restriction, inflation, and deflation.

The Brauer Quotient

Let k be a field, and P be a group.

Definition

If V is a $k P$-module, and $Q \leqslant P$, the Brauer quotient $V[Q]$ of V at Q is the $k N_{P}(Q) / Q$-module defined by

$$
V[Q]=V^{Q} / \sum_{S<Q} \operatorname{tr}_{S}^{Q} V^{S},
$$

where $t r_{S}^{Q}: V^{S} \rightarrow V^{Q}$ is the trace map $v \mapsto \sum_{x \in Q / S} x v$.

The Brauer Quotient

Let k be a field, and P be a group.

Definition

If V is a $k P$-module, and $Q \leqslant P$, the Brauer quotient $V[Q]$ of V at Q is the $k N_{P}(Q) / Q$-module defined by

$$
V[Q]=V^{Q} / \sum_{S<Q} \operatorname{tr}_{S}^{Q} V^{S},
$$

where $t r_{S}^{Q}: V^{S} \rightarrow V^{Q}$ is the trace map $v \mapsto \sum_{x \in Q / S} x v$.

Remark

The correspondence $V \mapsto V[Q]$ is a functor from $k P-\bmod$ to $k N_{P}(Q) / Q-\bmod$, denoted by $B r_{Q}^{P}$ (or $B r_{Q}$ is P is clear from context).

The Brauer Quotient

Let k be a field, and P be a group.

Definition

If V is a $k P$-module, and $Q \leqslant P$, the Brauer quotient $V[Q]$ of V at Q is the $k N_{P}(Q) / Q$-module defined by

$$
V[Q]=V^{Q} / \sum_{S<Q} \operatorname{tr}{ }_{S}^{Q} V^{S},
$$

where $t r_{S}^{Q}: V^{S} \rightarrow V^{Q}$ is the trace map $v \mapsto \sum_{x \in Q / S} x v$.

Remark

The correspondence $V \mapsto V[Q]$ is a functor from $k P-\bmod$ to $k N_{P}(Q) / Q-\bmod$, denoted by $B r_{Q}^{P}$ (or $B r_{Q}$ is P is clear from context).

Remark

When $V \cong k X$ is a permutation $k P$-module, where X is some P-set, the image of the set X^{Q} in $V[Q]$ is a k-basis of $V[Q]$ and $V[Q]$ is a permutation $k N_{P}(Q) / Q$-module.

Permutation Algebras

Definition

A P-algebra over k is a (finite-dimensional unital) k-algebra endowed with an action of P by algebra automorphisms.

Permutation Algebras

Definition

A P-algebra over k is a (finite-dimensional unital) k-algebra endowed with an action of P by algebra automorphisms.

A permutation P-algebra over k is a P-algebra over k, which is a permutation $k P$-module.

Permutation Algebras

Definition

A P-algebra over k is a (finite-dimensional unital) k-algebra endowed with an action of P by algebra automorphisms.
A permutation P-algebra over k is a P-algebra over k, which is a permutation $k P$-module.

Defintion

A P-algebra A is called primitive if the identity element 1_{A} is a primitive idempotent of the algebra A^{P}.

Permutation Algebras

Remark

If A is a P-algebra over k, and if $Q \leqslant P$, then $\sum_{S<Q} \operatorname{tr}_{S}^{Q} A^{S}$ is a two-sided ideal of A^{Q}, so $A[Q]$ is a $N_{P}(Q) / Q$-algebra over k.

Permutation Algebras

Remark

If A is a P-algebra over k, and if $Q \leqslant P$, then $\sum_{S<Q} \operatorname{tr}_{S}^{Q} A^{S}$ is a two-sided ideal of A^{Q}, so $A[Q]$ is a $N_{P}(Q) / Q$-algebra over k. Furthermore, if A is a permutation P-algebra, then $A[Q]$ is a permutation $N_{P}(Q) / Q$-algebra.

Permutation Algebras

Remark

If A is a P-algebra over k, and if $Q \leqslant P$, then $\sum_{S<Q} \operatorname{tr}_{S}^{Q} A^{S}$ is a two-sided ideal of A^{Q}, so $A[Q]$ is a $N_{P}(Q) / Q$-algebra over k. Furthermore, if A is a permutation P-algebra, then $A[Q]$ is a permutation $N_{P}(Q) / Q$-algebra.

Remark

If A is a permutation P-algebra over k with P-invariant basis X, and if $Q \unlhd P$, then the natural bijection

$$
\left(X^{Q}\right)^{P / Q} \cong X^{P}
$$

induces an algebra isomorphism $A[Q][P / Q] \rightarrow A[P]$.

12.2 Endo-Permutation Modules

Definition

Let k be a field of characteristic $p>0$, and P be a p-group.
A finitely generated $k P$-module M is called an endo-permutation module if the $k P$-module $E n d_{k}(M)$ is a permutation module.

12.2 Endo-Permutation Modules

Definition

Let k be a field of characteristic $p>0$, and P be a p-group.
A finitely generated $k P$-module M is called an endo-permutation module if the $k P$-module $E n d_{k}(M)$ is a permutation module.

Remark

In this definition, the action of P on $\operatorname{End}_{k}(M)$ is given by

$$
(x f)(m)=x f\left(x^{-1} m\right)
$$

for $x \in P, f \in \operatorname{End}_{k}(M)$, and $m \in M$.

12.2 Endo-Permutation Modules

Definition

Let k be a field of characteristic $p>0$, and P be a p-group.
A finitely generated $k P$-module M is called an endo-permutation module if the $k P$-module $E n d_{k}(M)$ is a permutation module.

Remark

In this definition, the action of P on $\operatorname{End}_{k}(M)$ is given by

$$
(x f)(m)=x f\left(x^{-1} m\right)
$$

for $x \in P, f \in \operatorname{End}_{k}(M)$, and $m \in M$.

Example

All permutation $k P$-modules are endo-permutation modules.

Examples

Example

If M is an endo-permutation $k P$-module, then its k-dual $M^{*}=\operatorname{Hom}_{k}(M, k)$ is also an endo-permutation $k P$-module since $E n d_{k}\left(M^{*}\right) \cong M \otimes_{k} M^{*} \cong E n d_{k}(M)$ as M is finite dimensional over k.

Examples

Example

If M is an endo-permutation $k P$-module, then its k-dual $M^{*}=\operatorname{Hom}_{k}(M, k)$ is also an endo-permutation $k P$-module since $E n d_{k}\left(M^{*}\right) \cong M \otimes_{k} M^{*} \cong E n d_{k}(M)$ as M is finite dimensional over k.

Example

Any direct summand M^{\prime} of an endo-permutation $k P$-module M is an endo-permutation $k P$-module since $M^{\prime} \otimes_{k} M^{\prime *}$ is a direct summand of $M \otimes_{k} M^{*}$.

Examples

Example

If M is an endo-permutation $k P$-module, then its k-dual $M^{*}=\operatorname{Hom}_{k}(M, k)$ is also an endo-permutation $k P$-module since $E n d_{k}\left(M^{*}\right) \cong M \otimes_{k} M^{*} \cong E n d_{k}(M)$ as M is finite dimensional over k.

Example

Any direct summand M^{\prime} of an endo-permutation $k P$-module M is an endo-permutation $k P$-module since $M^{\prime} \otimes_{k} M^{\prime *}$ is a direct summand of $M \otimes_{k} M^{*}$.

Example, (J.L. Alperin, 2000)
Let X be a nonempty finite P-set. Let $\varepsilon_{X}: k X \rightarrow k$ be the augmentation map, defined by $\varepsilon_{X}(x)=1$, for $x \in X$.

Examples

Example

If M is an endo-permutation $k P$-module, then its k-dual $M^{*}=\operatorname{Hom}_{k}(M, k)$ is also an endo-permutation $k P$-module since $E n d_{k}\left(M^{*}\right) \cong M \otimes_{k} M^{*} \cong E n d_{k}(M)$ as M is finite dimensional over k.

Example

Any direct summand M^{\prime} of an endo-permutation $k P$-module M is an endo-permutation $k P$-module since $M^{\prime} \otimes_{k} M^{\prime *}$ is a direct summand of $M \otimes_{k} M^{*}$.

Example, (J.L. Alperin, 2000)

Let X be a nonempty finite P-set. Let $\varepsilon_{X}: k X \rightarrow k$ be the augmentation map, defined by $\varepsilon_{X}(x)=1$, for $x \in X$. The kernel $\Omega_{X}(k)$ of ε_{X} is called the relative syzygy of the trivial module with respect to X.

Examples

Example

If M is an endo-permutation $k P$-module, then its k-dual $M^{*}=\operatorname{Hom}_{k}(M, k)$ is also an endo-permutation $k P$-module since $E n d_{k}\left(M^{*}\right) \cong M \otimes_{k} M^{*} \cong E n d_{k}(M)$ as M is finite dimensional over k.

Example

Any direct summand M^{\prime} of an endo-permutation $k P$-module M is an endo-permutation $k P$-module since $M^{\prime} \otimes_{k} M^{\prime *}$ is a direct summand of $M \otimes_{k} M^{*}$.

Example, (J.L. Alperin, 2000)

Let X be a nonempty finite P-set. Let $\varepsilon_{X}: k X \rightarrow k$ be the augmentation map, defined by $\varepsilon_{X}(x)=1$, for $x \in X$. The kernel $\Omega_{X}(k)$ of ε_{X} is called the relative syzygy of the trivial module with respect to X.
Therefore, there is a short exact sequence:

$$
0 \longrightarrow \Omega_{X}(k) \longrightarrow k X \longrightarrow k \longrightarrow 0
$$

$\Omega_{X}(k)$ is an endo-permutation module.

Examples

Example

If M and N are endo-permutation $k P$-modules, then so is $M \otimes_{k} N$, since

$$
\left(M \otimes_{k} N\right) \otimes(M \otimes N)^{*} \cong\left(M \otimes_{k} M^{*}\right) \otimes_{k}\left(N \otimes_{k} N^{*}\right)
$$

is a permutation $k P$-module.

Examples

Example

If M and N are endo-permutation $k P$-modules, then so is $M \otimes_{k} N$, since

$$
\left(M \otimes_{k} N\right) \otimes(M \otimes N)^{*} \cong\left(M \otimes_{k} M^{*}\right) \otimes_{k}\left(N \otimes_{k} N^{*}\right)
$$

is a permutation $k P$-module.

Example

If M and N are endo-permutation $k P$-modules, then

$$
(M \oplus N) \otimes_{k}(M \oplus N)^{*} \cong\left(M \otimes_{k} M^{*}\right) \oplus\left(M \otimes_{k} N^{*}\right) \oplus\left(N \otimes_{k} M^{*}\right) \oplus\left(N \otimes_{k} N^{*}\right)
$$

Examples

Example

If M and N are endo-permutation $k P$-modules, then so is $M \otimes_{k} N$, since

$$
\left(M \otimes_{k} N\right) \otimes(M \otimes N)^{*} \cong\left(M \otimes_{k} M^{*}\right) \otimes_{k}\left(N \otimes_{k} N^{*}\right)
$$

is a permutation $k P$-module.

Example

If M and N are endo-permutation $k P$-modules, then

$$
(M \oplus N) \otimes_{k}(M \oplus N)^{*} \cong\left(M \otimes_{k} M^{*}\right) \oplus\left(M \otimes_{k} N^{*}\right) \oplus\left(N \otimes_{k} M^{*}\right) \oplus\left(N \otimes_{k} N^{*}\right)
$$

Therefore, if $M \oplus N$ is an endo-permutation $k P$-module, then $M \otimes_{k} N^{*}$ is a permutation $k P$-module.

Examples

Example

If M and N are endo-permutation $k P$-modules, then so is $M \otimes_{k} N$, since

$$
\left(M \otimes_{k} N\right) \otimes(M \otimes N)^{*} \cong\left(M \otimes_{k} M^{*}\right) \otimes_{k}\left(N \otimes_{k} N^{*}\right)
$$

is a permutation $k P$-module.

Example

If M and N are endo-permutation $k P$-modules, then

$$
(M \oplus N) \otimes_{k}(M \oplus N)^{*} \cong\left(M \otimes_{k} M^{*}\right) \oplus\left(M \otimes_{k} N^{*}\right) \oplus\left(N \otimes_{k} M^{*}\right) \oplus\left(N \otimes_{k} N^{*}\right)
$$

Therefore, if $M \oplus N$ is an endo-permutation $k P$-module, then $M \otimes_{k} N^{*}$ is a permutation $k P$-module.

Conversely, if $M \otimes_{k} N^{*}$ is a permutation $k P$-module, then $N \otimes_{k} M^{*} \cong\left(M \otimes_{k} N^{*}\right)^{*}$ is a permutation module, and $M \oplus N$ is an endo-permutation $k P$-module.

Definitions

Let k be a field of characteristic $p>0$ and P be a p-group.

Definition

Two endo-permutation $k P$-modules M and N are said to be compatible (which is denoted by $M \sim N$) if $M \oplus N$ is an endo-permutation $k P$-module, or, equivalently, if $M \otimes_{k} N^{*}$ is a permutation $k P$-module.

Definitions

Let k be a field of characteristic $p>0$ and P be a p-group.

Definition

Two endo-permutation $k P$-modules M and N are said to be compatible (which is denoted by $M \sim N$) if $M \oplus N$ is an endo-permutation $k P$-module, or, equivalently, if $M \otimes_{k} N^{*}$ is a permutation $k P$-module.

Definition

An endo-permutation $k P$-module M is said to be capped if it admits an indecomposable summand with vertex P.

Lemma 12.2.6

Lemma 12.2.6

Let k be a field of characteristic $p>0, P$ be a p-group, and M be an endo-permutation $k P$-module.

The following are equivalent:

1) The module M is capped.
2) The Brauer quotient $E n d_{k}(M)[P]$ is non-zero.
3) The trivial module k appears as a direct summand of the $k P$-module $E n d_{k}(M) \cong M \otimes_{k} M^{*}$.

Lemma 12.2.6

Lemma 12.2.6

Let k be a field of characteristic $p>0, P$ be a p-group, and M be an endo-permutation $k P$-module.

The following are equivalent:

1) The module M is capped.
2) The Brauer quotient $E n d_{k}(M)[P]$ is non-zero.
3) The trivial module k appears as a direct summand of the $k P$-module $E n d_{k}(M) \cong M \otimes_{k} M^{*}$.
$2 \Longleftrightarrow 3:$
M is an endo-permutation $k P$-module, so

$$
\operatorname{End}_{k}(M) \cong \bigoplus_{Q \leqslant P} a_{Q} k P / Q
$$

Lemma 12.2.6

Lemma 12.2.6

Let k be a field of characteristic $p>0, P$ be a p-group, and M be an endo-permutation $k P$-module.

The following are equivalent:

1) The module M is capped.
2) The Brauer quotient $E n d_{k}(M)[P]$ is non-zero.
3) The trivial module k appears as a direct summand of the $k P$-module $E n d_{k}(M) \cong M \otimes_{k} M^{*}$.
$2 \Longleftrightarrow 3:$
M is an endo-permutation $k P$-module, so

$$
\operatorname{End}_{k}(M) \cong \bigoplus_{Q \leqslant P} a_{Q} k P / Q
$$

Now for each $Q \leqslant P, k P / Q$ is a permutation module with vertex Q.

Lemma 12.2.6

Lemma 12.2.6

Let k be a field of characteristic $p>0, P$ be a p-group, and M be an endo-permutation $k P$-module.

The following are equivalent:

1) The module M is capped.
2) The Brauer quotient $E n d_{k}(M)[P]$ is non-zero.
3) The trivial module k appears as a direct summand of the $k P$-module $E n d_{k}(M) \cong M \otimes_{k} M^{*}$.
$2 \Longleftrightarrow 3:$
M is an endo-permutation $k P$-module, so

$$
\operatorname{End}_{k}(M) \cong \bigoplus_{Q \leqslant P} a_{Q} k P / Q
$$

Now for each $Q \leqslant P, k P / Q$ is a permutation module with vertex Q.
Recall if N is an indecomposable permutation $k P$-module with vertex Q and $R \leqslant P$, then $N[R] \neq 0$ if $R \leqslant_{P} Q$ and $N[R]=0$ otherwise.

Lemma 12.2.6

Lemma 12.2.6

Let k be a field of characteristic $p>0, P$ be a p-group, and M be an endo-permutation $k P$-module.

The following are equivalent:

1) The module M is capped.
2) The Brauer quotient $E n d_{k}(M)[P]$ is non-zero.
3) The trivial module k appears as a direct summand of the $k P$-module $E n d_{k}(M) \cong M \otimes_{k} M^{*}$.
$2 \Longleftrightarrow 3:$
M is an endo-permutation $k P$-module, so

$$
\operatorname{End}_{k}(M) \cong \bigoplus_{Q \leqslant P} a_{Q} k P / Q
$$

Now for each $Q \leqslant P, k P / Q$ is a permutation module with vertex Q.
Recall if N is an indecomposable permutation $k P$-module with vertex Q and $R \leqslant P$, then $N[R] \neq 0$ if $R \leqslant{ }_{P} Q$ and $N[R]=0$ otherwise. Therefore, $E n d_{k}(M)[P] \neq 0$ iff k is an indecomposable summand of $E n d_{k}(M)$

Lemma 12.2.7

Lemma 12.2.7

Let k be a field of characteristic $p>0$ and P be a p-group. If M is a capped endo-permutation module, so is M^{*}. If M and N are capped endo-permutation $k P$-modules, so is $M \otimes_{k} N$.

Lemma 12.2.7

Lemma 12.2.7

Let k be a field of characteristic $p>0$ and P be a p-group. If M is a capped endo-permutation module, so is M^{*}. If M and N are capped endo-permutation $k P$-modules, so is $M \otimes_{k} N$.

Proof: The first claim follows from Lemma 12.2.6 since

$$
\operatorname{End}_{k}(M) \cong M \otimes_{k} M^{*} \cong \operatorname{End}_{k}\left(M^{*}\right)
$$

Lemma 12.2.7

Lemma 12.2.7

Let k be a field of characteristic $p>0$ and P be a p-group. If M is a capped endo-permutation module, so is M^{*}. If M and N are capped endo-permutation $k P$-modules, so is $M \otimes_{k} N$.

Proof: The first claim follows from Lemma 12.2.6 since

$$
\operatorname{End}_{k}(M) \cong M \otimes_{k} M^{*} \cong \operatorname{End}_{k}\left(M^{*}\right)
$$

Suppose that M and N are both capped endo-permutation $k P$-modules. Now,

$$
\left(M \otimes_{k} N\right) \otimes_{k}\left(M \otimes_{k} N\right)^{*} \cong\left(M \otimes_{k} M^{*}\right) \otimes_{k}\left(N \otimes_{k} N^{*}\right)
$$

has a direct summand isomorphic to k since both $M \otimes_{k} M^{*}$ and $N \otimes_{k} N^{*}$ have one.

The Dade Group

12.2.8 Theorem \& Definition [Dade]

Let k be a field of characteristic $p>0$ and P be p-group.

1) The relation \sim is an equivalence relation on the class of capped endo-permutation $k P$-modules. Let $D_{k}(P)$ denote the set of equivalence classes for this relation.

The Dade Group

12.2.8 Theorem \& Definition [Dade]

Let k be a field of characteristic $p>0$ and P be p-group.

1) The relation \sim is an equivalence relation on the class of capped endo-permutation $k P$-modules. Let $D_{k}(P)$ denote the set of equivalence classes for this relation.
2) Let M and N be capped endo-permutation $k P$-modules. Then $M \sim N$ if and only if $M^{*} \sim N^{*}$.

The Dade Group

12.2.8 Theorem \& Definition [Dade]

Let k be a field of characteristic $p>0$ and P be p-group.

1) The relation \sim is an equivalence relation on the class of capped endo-permutation $k P$-modules. Let $D_{k}(P)$ denote the set of equivalence classes for this relation.
2) Let M and N be capped endo-permutation $k P$-modules. Then $M \sim N$ if and only if $M^{*} \sim N^{*}$.
3) If M, N, M^{\prime}, and N^{\prime} are capped endo-permutation $k P$-modules such that $M \sim N$ and $M^{\prime} \sim N^{\prime}$, then $M \otimes_{k} M^{\prime} \sim N \otimes_{k} N^{\prime}$.

The Dade Group

12.2.8 Theorem \& Definition [Dade]

Let k be a field of characteristic $p>0$ and P be p-group.

1) The relation \sim is an equivalence relation on the class of capped endo-permutation $k P$-modules. Let $D_{k}(P)$ denote the set of equivalence classes for this relation.
2) Let M and N be capped endo-permutation $k P$-modules. Then $M \sim N$ if and only if $M^{*} \sim N^{*}$.
3) If M, N, M^{\prime}, and N^{\prime} are capped endo-permutation $k P$-modules such that $M \sim N$ and $M^{\prime} \sim N^{\prime}$, then $M \otimes_{k} M^{\prime} \sim N \otimes_{k} N^{\prime}$.
4) The tensor product of modules induces an addition on $D_{k}(P)$, defined by

$$
[M]+[N]=\left[M \otimes_{k} N\right],
$$

where $[M]$ denotes the equivalence class of the capped endo-permutation $k P$ module M. Then $D_{k}(P)$ is an Abelian group for this addition law, called the Dade group of P over k. The zero element of $D_{k}(P)$ is the class $[k]$ of the trivial module, and the opposite of the class of M is the class of M^{*}.

Proof of 12.2.8

Assertion 1: Reflexivity and Symmetry follow from the definitions.

Proof of 12.2.8

Assertion 1: Reflexivity and Symmetry follow from the definitions. Suppose that M, N, and L are capped endo-permutation $k P$-modules such that $M \sim N$ and $N \sim L$.

Proof of 12.2.8

Assertion 1: Reflexivity and Symmetry follow from the definitions. Suppose that M, N, and L are capped endo-permutation $k P$-modules such that $M \sim N$ and $N \sim L$. Then $M \otimes_{k} N^{*}$ and $N \otimes_{k} L^{*}$ are both permutation $k P$-modules.

Proof of 12.2.8

Assertion 1: Reflexivity and Symmetry follow from the definitions. Suppose that M, N, and L are capped endo-permutation $k P$-modules such that $M \sim N$ and $N \sim L$. Then $M \otimes_{k} N^{*}$ and $N \otimes_{k} L^{*}$ are both permutation $k P$-modules. Therefore, $T=\left(M \otimes_{k} N^{*}\right) \otimes_{k}\left(N \otimes_{k} L^{*}\right) \cong M \otimes_{k}\left(N \otimes_{k} N^{*}\right) \otimes_{k} L^{*}$ is a permutation $k P$-module.

Proof of 12.2.8

Assertion 1: Reflexivity and Symmetry follow from the definitions. Suppose that M, N, and L are capped endo-permutation $k P$-modules such that $M \sim N$ and $N \sim L$. Then $M \otimes_{k} N^{*}$ and $N \otimes_{k} L^{*}$ are both permutation $k P$-modules. Therefore, $T=\left(M \otimes_{k} N^{*}\right) \otimes_{k}\left(N \otimes_{k} L^{*}\right) \cong M \otimes_{k}\left(N \otimes_{k} N^{*}\right) \otimes_{k} L^{*}$ is a permutation $k P$-module. Now, k is a direct summand of $N^{*} \otimes N$.

Proof of 12.2.8

Assertion 1: Reflexivity and Symmetry follow from the definitions. Suppose that M, N, and L are capped endo-permutation $k P$-modules such that $M \sim N$ and $N \sim L$. Then $M \otimes_{k} N^{*}$ and $N \otimes_{k} L^{*}$ are both permutation $k P$-modules. Therefore, $T=\left(M \otimes_{k} N^{*}\right) \otimes_{k}\left(N \otimes_{k} L^{*}\right) \cong M \otimes_{k}\left(N \otimes_{k} N^{*}\right) \otimes_{k} L^{*}$ is a permutation $k P$-module. Now, k is a direct summand of $N^{*} \otimes N$. Therefore, $M \otimes_{k} L^{*}$ is a direct summand of T and is hence a permutation $k P$-module. Therefore, $M \sim L$.

Proof of 12.2.8

Assertion 1: Reflexivity and Symmetry follow from the definitions. Suppose that M, N, and L are capped endo-permutation $k P$-modules such that $M \sim N$ and $N \sim L$. Then $M \otimes_{k} N^{*}$ and $N \otimes_{k} L^{*}$ are both permutation $k P$-modules. Therefore, $T=\left(M \otimes_{k} N^{*}\right) \otimes_{k}\left(N \otimes_{k} L^{*}\right) \cong M \otimes_{k}\left(N \otimes_{k} N^{*}\right) \otimes_{k} L^{*}$ is a permutation $k P$-module. Now, k is a direct summand of $N^{*} \otimes N$. Therefore, $M \otimes_{k} L^{*}$ is a direct summand of T and is hence a permutation $k P$-module. Therefore, $M \sim L$.

Assertion 2: Follows from

$$
(M \oplus N)^{*} \cong M^{*} \oplus N^{*}
$$

and the dual of an endo-permutation $k P$-module is an endo-permutation $k P$-module.

Proof of 12.2.8

Assertion 1: Reflexivity and Symmetry follow from the definitions. Suppose that M, N, and L are capped endo-permutation $k P$-modules such that $M \sim N$ and $N \sim L$. Then $M \otimes_{k} N^{*}$ and $N \otimes_{k} L^{*}$ are both permutation $k P$-modules. Therefore, $T=\left(M \otimes_{k} N^{*}\right) \otimes_{k}\left(N \otimes_{k} L^{*}\right) \cong M \otimes_{k}\left(N \otimes_{k} N^{*}\right) \otimes_{k} L^{*}$ is a permutation $k P$-module. Now, k is a direct summand of $N^{*} \otimes N$. Therefore, $M \otimes_{k} L^{*}$ is a direct summand of T and is hence a permutation $k P$-module. Therefore, $M \sim L$.

Assertion 2: Follows from

$$
(M \oplus N)^{*} \cong M^{*} \oplus N^{*}
$$

and the dual of an endo-permutation $k P$-module is an endo-permutation $k P$-module.

Assertion 3: Follows from

$$
\left(M \otimes_{k} N\right) \otimes_{k}\left(M^{\prime} \otimes_{k} N^{\prime}\right)^{*} \cong\left(M \otimes_{k} M^{\prime *}\right) \otimes_{k}\left(N \otimes_{k} N^{\prime *}\right)
$$

and the tensor product of two permutation $k P$-modules is a permutation $k P$-module.

Proof of 12.2.8 continued

Assertion 4: The addition on $D_{k}(P)$ is well-defined by Assertion 3 and it is straightforward to show that the addition is commutative and associative.

Proof of 12.2.8 continued

Assertion 4: The addition on $D_{k}(P)$ is well-defined by Assertion 3 and it is straightforward to show that the addition is commutative and associative. [k] is the zero element of $D_{k}(P)$ since $M \otimes_{k} k \cong M$ for each $k P$-module M.

Proof of 12.2.8 continued

Assertion 4: The addition on $D_{k}(P)$ is well-defined by Assertion 3 and it is straightforward to show that the addition is commutative and associative.
$[k]$ is the zero element of $D_{k}(P)$ since $M \otimes_{k} k \cong M$ for each $k P$-module M.
Note that $[k]$ consists of all capped endo-permutation modules such that k is an indecomposable summand.

Proof of 12.2.8 continued

Assertion 4: The addition on $D_{k}(P)$ is well-defined by Assertion 3 and it is straightforward to show that the addition is commutative and associative.
$[k]$ is the zero element of $D_{k}(P)$ since $M \otimes_{k} k \cong M$ for each $k P$-module M.
Note that $[k]$ consists of all capped endo-permutation modules such that k is an indecomposable summand.

Therefore, for each capped endo-permutation module M, the module $M \otimes_{k} M^{*}$ is in the equivalence class $[k]$ and hence $[M]+\left[M^{*}\right]=[k]$.

Lemma 12.2.9

Lemma 12.2.9 [Dade]

Let k be a field of characteristic $p>0$, let P be a p-group, and let M be a capped endo-permutation $k P$-module.

1) If V is a capped indecomposable endo-permutation $k P$-module, then $V \sim M$ if and only if V is isomorphic to a direct summand of M.

Lemma 12.2.9

Lemma 12.2.9 [Dade]

Let k be a field of characteristic $p>0$, let P be a p-group, and let M be a capped endo-permutation $k P$-module.

1) If V is a capped indecomposable endo-permutation $k P$-module, then $V \sim M$ if and only if V is isomorphic to a direct summand of M.
2) In particular, if V and W are indecomposable summands of M with vertex P, then $V \cong W$.

Cap

Definition

Let k be a field of characteristic $p>0$, and P be a p-group. If M is a capped endo-permutation $k P$-module, a cap of M is an indecomposable summand of M with vertex P.

Definition

Let k be a field of characteristic $p>0$, and P be a p-group. If M is a capped endo-permutation $k P$-module, a cap of M is an indecomposable summand of M with vertex P.

Remark

By Lemma 12.2.9, the cap of a capped endo-permutation $k P$-module is unique, up to isomorphism, and two capped endo-permutation $k P$-modules are compatible if and only if they have isomorphic caps.

Definition

Let k be a field of characteristic $p>0$, and P be a p-group. If M is a capped endo-permutation $k P$-module, a cap of M is an indecomposable summand of M with vertex P.

Remark

By Lemma 12.2.9, the cap of a capped endo-permutation $k P$-module is unique, up to isomorphism, and two capped endo-permutation $k P$-modules are compatible if and only if they have isomorphic caps.

This means that $D_{k}(P)$ is the set of isomorphism classes of capped indecomposable endo-permutation $k P$-modules.

