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12.1 Permutation Modules and Algebras

Let p be a prime number, P be a p - group, and k be a field of characteristic p.

Definition

A permutation kP-module M is a kP-module that admits a P-invariant k-basis X.
Equivalently, M is isomorphic to kX for some P-set X.

Note: Throughout this chapter, we will assume that all permutation kP-modules
are finitely generated or equivalently finite-dimensional over k.
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Permutation Modules

Let M ∼= kX be a permutation kP-module for some P-set X.

Then
M ∼=

⊕
Q⩽P

aQkP/Q

Now, kP - modules of the form kP/Q where Q is a subgroup of P are
indecomposable with vertex Q.

Therefore any direct summand of a permutation kP-module is a permutation
kP-module.

Also, by the Krull-Schmidt theorem, Y is another P-invariant k-bases of M then
the P-sets X and Y are isomorphic.
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Permutation Modules

Remark

Let V ∼= kX and W ∼= kY be permutation kP-modules for some P-sets X and Y. Then,

V ⊕ W ∼= k(X ⊔ Y)

and
V ⊗k W ∼= k(X × Y)

are permutation kP-modules.

Remark

Let P and Q be p-groups, and U be a finite (Q, P)-biset.
If V is a permutation kP-module, with P-invariant k basis X, then

kU ⊗kP V ∼= k(U ×P X)

and is hence a permutation kQ-module.

Therefore, the class of permutation modules is closed under the usual biset
operations on modules, namely induction, restriction, inflation, and deflation.

Jennifer (UC Santa Cruz) The Dade Group 12.1 & 12.2 Morelia, Mexico 2023 4/18



Permutation Modules

Remark

Let V ∼= kX and W ∼= kY be permutation kP-modules for some P-sets X and Y. Then,

V ⊕ W ∼= k(X ⊔ Y)

and
V ⊗k W ∼= k(X × Y)

are permutation kP-modules.

Remark

Let P and Q be p-groups, and U be a finite (Q, P)-biset.
If V is a permutation kP-module, with P-invariant k basis X, then

kU ⊗kP V ∼= k(U ×P X)

and is hence a permutation kQ-module.

Therefore, the class of permutation modules is closed under the usual biset
operations on modules, namely induction, restriction, inflation, and deflation.

Jennifer (UC Santa Cruz) The Dade Group 12.1 & 12.2 Morelia, Mexico 2023 4/18



Permutation Modules

Remark

Let V ∼= kX and W ∼= kY be permutation kP-modules for some P-sets X and Y. Then,

V ⊕ W ∼= k(X ⊔ Y)

and
V ⊗k W ∼= k(X × Y)

are permutation kP-modules.

Remark

Let P and Q be p-groups, and U be a finite (Q, P)-biset.
If V is a permutation kP-module, with P-invariant k basis X, then

kU ⊗kP V ∼= k(U ×P X)

and is hence a permutation kQ-module.

Therefore, the class of permutation modules is closed under the usual biset
operations on modules, namely induction, restriction, inflation, and deflation.

Jennifer (UC Santa Cruz) The Dade Group 12.1 & 12.2 Morelia, Mexico 2023 4/18



The Brauer Quotient

Let k be a field, and P be a group.

Definition

If V is a kP-module, and Q ⩽ P, the Brauer quotient V[Q] of V at Q is the
kNP(Q)/Q-module defined by

V[Q] = VQ/ ∑
S<Q

trQ
S VS,

where trQ
S : VS → VQ is the trace map v 7→ ∑

x∈Q/S
xv.

Remark

The correspondence V 7→ V[Q] is a functor from kP-mod to kNP(Q)/Q-mod, denoted by
BrP

Q (or BrQ is P is clear from context).

Remark

When V ∼= kX is a permutation kP-module, where X is some P-set, the image of the set
XQ in V[Q] is a k-basis of V[Q] and V[Q] is a permutation kNP(Q)/Q-module.
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Permutation Algebras

Definition

A P-algebra over k is a (finite-dimensional unital) k-algebra endowed with an action of P
by algebra automorphisms.

A permutation P-algebra over k is a P-algebra over k, which is a permutation kP-module.

Defintion

A P-algebra A is called primitive if the identity element 1A is a primitive idempotent of
the algebra AP.
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Permutation Algebras

Remark

If A is a P-algebra over k, and if Q ⩽ P, then ∑
S<Q

trQ
S AS is a two-sided ideal of AQ,

so A[Q] is a NP(Q)/Q-algebra over k.

Furthermore, if A is a permutation P-algebra, then
A[Q] is a permutation NP(Q)/Q-algebra.

Remark

If A is a permutation P-algebra over k with P-invariant basis X, and if Q ⊴ P, then the
natural bijection

(XQ)P/Q ∼= XP

induces an algebra isomorphism A[Q][P/Q] → A[P].
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12.2 Endo-Permutation Modules

Definition

Let k be a field of characteristic p > 0, and P be a p-group.

A finitely generated kP-module M is called an endo-permutation module if the
kP-module Endk(M) is a permutation module.

Remark

In this definition, the action of P on Endk(M) is given by

(x f )(m) = x f (x−1m)

for x ∈ P, f ∈ Endk(M), and m ∈ M.

Example

All permutation kP-modules are endo-permutation modules.
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Examples

Example

If M is an endo-permutation kP-module, then its k-dual M∗ = Homk(M, k) is also an
endo-permutation kP-module since Endk(M∗) ∼= M ⊗k M∗ ∼= Endk(M) as M is finite
dimensional over k.

Example

Any direct summand M′ of an endo-permutation kP-module M is an endo-permutation
kP-module since M′ ⊗k M′∗ is a direct summand of M ⊗k M∗.

Example, (J.L. Alperin, 2000)

Let X be a nonempty finite P-set. Let εX : kX → k be the augmentation
map, defined by εX(x) = 1, for x ∈ X. The kernel ΩX(k) of εX is called the
relative syzygy of the trivial module with respect to X.
Therefore, there is a short exact sequence:

0 −→ ΩX(k) −→ kX −→ k −→ 0.
ΩX(k) is an endo-permutation module.
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Examples

Example

If M and N are endo-permutation kP-modules, then so is M ⊗k N, since

(M ⊗k N)⊗ (M ⊗ N)∗ ∼= (M ⊗k M∗)⊗k (N ⊗k N∗)

is a permutation kP-module.

Example

If M and N are endo-permutation kP-modules, then

(M ⊕ N)⊗k (M ⊕ N)∗ ∼= (M ⊗k M∗)⊕ (M ⊗k N∗)⊕ (N ⊗k M∗)⊕ (N ⊗k N∗)

Therefore, if M ⊕ N is an endo-permutation kP-module, then M ⊗k N∗ is a permutation
kP-module.

Conversely, if M ⊗k N∗ is a permutation kP-module, then N ⊗k M∗ ∼= (M ⊗k N∗)∗ is a
permutation module, and M ⊕ N is an endo-permutation kP-module.
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Definitions

Let k be a field of characteristic p > 0 and P be a p-group.

Definition

Two endo-permutation kP-modules M and N are said to be compatible (which is denoted
by M ∼ N) if M ⊕ N is an endo-permutation kP-module, or, equivalently, if M ⊗k N∗ is a
permutation kP-module.

Definition

An endo-permutation kP-module M is said to be capped if it admits an indecomposable
summand with vertex P.
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Lemma 12.2.6

Lemma 12.2.6

Let k be a field of characteristic p > 0, P be a p-group, and M be an endo-permutation
kP-module.

The following are equivalent:
1) The module M is capped.

2) The Brauer quotient Endk(M)[P] is non-zero.

3) The trivial module k appears as a direct summand of the kP-module
Endk(M) ∼= M ⊗k M∗.

2 ⇐⇒ 3:

M is an endo-permutation kP-module, so

Endk(M) ∼=
⊕
Q⩽P

aQkP/Q.

Now for each Q ⩽ P, kP/Q is a permutation module with vertex Q.
Recall if N is an indecomposable permutation kP-module with vertex Q and
R ⩽ P, then N[R] ̸= 0 if R ⩽P Q and N[R] = 0 otherwise. Therefore,
Endk(M)[P] ̸= 0 iff k is an indecomposable summand of Endk(M)

Jennifer (UC Santa Cruz) The Dade Group 12.1 & 12.2 Morelia, Mexico 2023 12/18



Lemma 12.2.6

Lemma 12.2.6

Let k be a field of characteristic p > 0, P be a p-group, and M be an endo-permutation
kP-module.

The following are equivalent:
1) The module M is capped.

2) The Brauer quotient Endk(M)[P] is non-zero.

3) The trivial module k appears as a direct summand of the kP-module
Endk(M) ∼= M ⊗k M∗.

2 ⇐⇒ 3:

M is an endo-permutation kP-module, so

Endk(M) ∼=
⊕
Q⩽P

aQkP/Q.

Now for each Q ⩽ P, kP/Q is a permutation module with vertex Q.
Recall if N is an indecomposable permutation kP-module with vertex Q and
R ⩽ P, then N[R] ̸= 0 if R ⩽P Q and N[R] = 0 otherwise. Therefore,
Endk(M)[P] ̸= 0 iff k is an indecomposable summand of Endk(M)

Jennifer (UC Santa Cruz) The Dade Group 12.1 & 12.2 Morelia, Mexico 2023 12/18



Lemma 12.2.6

Lemma 12.2.6

Let k be a field of characteristic p > 0, P be a p-group, and M be an endo-permutation
kP-module.

The following are equivalent:
1) The module M is capped.

2) The Brauer quotient Endk(M)[P] is non-zero.

3) The trivial module k appears as a direct summand of the kP-module
Endk(M) ∼= M ⊗k M∗.

2 ⇐⇒ 3:

M is an endo-permutation kP-module, so

Endk(M) ∼=
⊕
Q⩽P

aQkP/Q.
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Lemma 12.2.7

Lemma 12.2.7

Let k be a field of characteristic p > 0 and P be a p-group.
If M is a capped endo-permutation module, so is M∗. If M and N are capped
endo-permutation kP-modules, so is M ⊗k N.

Proof: The first claim follows from Lemma 12.2.6 since

Endk(M) ∼= M ⊗k M∗ ∼= Endk(M∗).

Suppose that M and N are both capped endo-permutation kP-modules. Now,

(M ⊗k N)⊗k (M ⊗k N)∗ ∼= (M ⊗k M∗)⊗k (N ⊗k N∗)

has a direct summand isomorphic to k since both M ⊗k M∗ and N ⊗k N∗ have
one.
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The Dade Group

12.2.8 Theorem & Definition [Dade]

Let k be a field of characteristic p > 0 and P be p-group.
1) The relation ∼ is an equivalence relation on the class of capped endo-permutation

kP-modules. Let Dk(P) denote the set of equivalence classes for this relation.

2) Let M and N be capped endo-permutation kP-modules. Then M ∼ N if and only if
M∗ ∼ N∗.

3) If M, N, M′, and N′ are capped endo-permutation kP-modules such that M ∼ N and
M′ ∼ N′, then M ⊗k M′ ∼ N ⊗k N′.

4) The tensor product of modules induces an addition on Dk(P), defined by

[M] + [N] = [M ⊗k N],

where [M] denotes the equivalence class of the capped endo-permutation kP-
module M. Then Dk(P) is an Abelian group for this addition law, called the
Dade group of P over k. The zero element of Dk(P) is the class [k] of the trivial mod-
ule, and the opposite of the class of M is the class of M∗.
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Proof of 12.2.8

Assertion 1: Reflexivity and Symmetry follow from the definitions.

Suppose
that M,N, and L are capped endo-permutation kP-modules such that M ∼ N
and N ∼ L. Then M ⊗k N∗ and N ⊗k L∗ are both permutation kP-modules.
Therefore, T = (M ⊗k N∗)⊗k (N ⊗k L∗) ∼= M ⊗k (N ⊗k N∗)⊗k L∗ is a
permutation kP-module. Now, k is a direct summand of N∗ ⊗ N. Therefore,
M ⊗k L∗ is a direct summand of T and is hence a permutation kP-module.
Therefore, M ∼ L.

Assertion 2: Follows from

(M ⊕ N)∗ ∼= M∗ ⊕ N∗

and the dual of an endo-permutation kP-module is an endo-permutation
kP-module.

Assertion 3: Follows from

(M ⊗k N)⊗k (M′ ⊗k N′)∗ ∼= (M ⊗k M′∗)⊗k (N ⊗k N′∗)

and the tensor product of two permutation kP-modules is a permutation
kP-module.
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Proof of 12.2.8 continued

Assertion 4: The addition on Dk(P) is well-defined by Assertion 3 and it is
straightforward to show that the addition is commutative and associative.

[k] is the zero element of Dk(P) since M ⊗k k ∼= M for each kP-module M.

Note that [k] consists of all capped endo-permutation modules such that k is an
indecomposable summand.

Therefore, for each capped endo-permutation module M, the module M ⊗k M∗

is in the equivalence class [k] and hence [M] + [M∗] = [k].
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Lemma 12.2.9

Lemma 12.2.9 [Dade]

Let k be a field of characteristic p > 0, let P be a p-group, and let M be a capped
endo-permutation kP-module.

1) If V is a capped indecomposable endo-permutation kP-module, then V ∼ M if and
only if V is isomorphic to a direct summand of M.

2) In particular, if V and W are indecomposable summands of M with vertex P, then
V ∼= W.
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Cap

Definition

Let k be a field of characteristic p > 0, and P be a p-group. If M is a capped
endo-permutation kP-module, a cap of M is an indecomposable summand of M with
vertex P.

Remark

By Lemma 12.2.9, the cap of a capped endo-permutation kP-module is unique, up to
isomorphism, and two capped endo-permutation kP-modules are compatible if and only
if they have isomorphic caps.

This means that Dk(P) is the set of isomorphism classes of capped indecomposable
endo-permutation kP-modules.
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