Problems on Green Biset Functors and the Dade Group

Robert Boltje

June 2023
$\mathrm{R}=$ routine
$\mathrm{C}=$ Challenging
$\mathrm{O}=$ Open research problem

1 Green biset functors

1. (R) Let M be a biset functor over a commutative ring R. Show that there exists an isomorphism

$$
\mathcal{H}(R B, M) \cong M
$$

of biset functors over R which is natural in M.
3. (C) Let k be a field of characteristic p. Find a subcategory \mathcal{D} of the biset category \mathcal{C} that is as large as possible so that the Grothendieck group $R(k G)$ of finitely generated $k G$-modules (with respect to short exact sequences) is a biset functor. Is it a Green biset functor on \mathcal{D}
2. (R) Let A be a Green biset functor over a commutative ring R. Show that, for any positive integer n, there exists a Green biset functor $\operatorname{Mat}_{n}(A)$ whose evaluation at a finite group G is equal to $\operatorname{Mat}_{n}(A(G))$.
3. (a) (R) Show that the Burnside ring functor $G \mapsto B(G)$ has the structure of a Green biset functor.
(b) (R) Show that the character ring functor $G \mapsto R(G)$ has the structure of a Green biset functor.
(c) (R) Show that the maps $B(G) \rightarrow R(G)$ sending the class $[X] \in B(G)$ of a finite G-set X to the character of the permutation $\mathbb{C} G$-module $\mathbb{C} X$ define a morphism of Green biset functors.
4. (R) Let A be a Green biset functor over a commutative ring R. Show that there exists a unique morphisms $\eta: R B \rightarrow A$ of Green biset functors over R.

2 The Dade Group

1. Let p be a prime, k a field of characteristic p, and $P=\langle x\rangle$ a cyclic group of order p^{n}.
(a) (R) Show that the three k-algebras $k P, k[T] /\left(T^{p^{n}}-1\right)$, and $k[T] /((T-$ $1)^{p^{n}}$) are isomorphic.
(b) (R) Show that each submodule of the regular $k P$-module is of the form $M_{i}=(x-1)^{i} k P$ for $i=0,1,2, \ldots, p^{n}$ and that $\operatorname{dim}_{k} M_{i}=p^{n}-i$.
(c) (R) Show that every indecomposable $k P$-module is of the form $U_{i}:=$ $k P / M_{i}$ for some $i=0, \ldots, p^{n}$.
(d) (C) Decompose $U_{i} \otimes_{k} U_{j}$ into a direct sum of indecomposable modules.
(e) (R) For which $i=0, \ldots, p^{n}$ is U_{i} a permutation $k P$-module?
(f) (C) For which $i=0, \ldots, p^{n}$ is U_{i} an endo-permutation module?
(g) (R with f) For which $i=0, \ldots, p^{n}$ is U_{i} a capped endo-permutation module?
(h) (R with g) Describe the Dade group $D_{k}(P)$.
2. (Following Alperin) Let p be a prime, k a field of characteristic p, P a p-group and X be a finite P-set. Consider the $k P$-module homomorphism

$$
\begin{equation*}
\varepsilon: k X \rightarrow k \tag{1}
\end{equation*}
$$

which sends each element x of X to 1 . The goal is to show that $\Omega(X):=$ $\operatorname{ker}(\varepsilon)$ is an endo-permutation $k P$-module.
(a) (R) Consider (1) as a chain complex C with $k X$ in degree 0 . Show that the k-dual of C is isomorphic to the chain complex

$$
\begin{equation*}
\eta: k \rightarrow k X \tag{2}
\end{equation*}
$$

where $\sigma(1)$ is the sum of all elements in X. Show that $H_{0}(C)=\Omega(X)$ and $H_{0}\left(C^{*}\right)=\Omega(X)^{*}$.
(b) (C) Consider the tensor product complex $C \otimes_{k} C^{*}$. Show that $C \otimes_{k} C^{*}$ is contractible as chain complex of $k P$-modules and that

$$
H_{0}\left(C \otimes_{k} C^{*}\right) \cong \Omega(X) \otimes_{k} \Omega(X)^{*}
$$

(c) (R) Derive from (b) that $\Omega(X)$ is an endo-permutation $k P$-module.
3. (C) Let p be a prime, k a field of characteristic p, a P a finite p-group. Further, suppose that

$$
0 \rightarrow L \rightarrow P \rightarrow M \rightarrow 0
$$

is a short exact sequence of finitely generated $k P$-modules with P a projective module. Show that M is a capped endo-permutation $k P$-module if and only if L is.
4. (C) Let p be a prime, k a field of characteristic p, G a finite group and M a finitely generated $k G$-module. Recall that the Brauer quotient (or Brauer construction) $M[P]$ of M at a p-subgroup P of G is defined as the $k\left(N_{G}(P) / P\right)$-module

$$
M[P]:=M^{P} / \sum_{Q<P} \operatorname{tr}_{Q}^{P}\left(M^{Q}\right)
$$

Suppose that $M=k X$ for a finite G-set X. Show that the composition

$$
k\left[X^{P}\right] \subseteq(k X)^{P} \rightarrow(k X)[P]
$$

is an isomorphism of $k\left(N_{G}(P) / P\right)$-modules.
5. (O) Let \mathcal{O} be a complete discrete valuation ring with residue field of characteristic p, as for example the ring of p-adic integers \mathbb{Z}_{p}, and let P be a p-group.

A finitely generated $\mathcal{O} G$-module L, which is free as an \mathcal{O}-module, is called an endo-monomial $\mathcal{O} P$-module if $\operatorname{End}_{\mathcal{O}}(L)$ is a monomial $\mathcal{O} P$-module, i.e., if it is isomorphic to a direct sum of $\mathcal{O} P$-modules of the form $\operatorname{Ind}_{Q}^{P} \mathcal{O}_{\varphi}$, where $Q \leq P, \varphi \in \operatorname{Hom}\left(Q, \mathcal{O}^{\times}\right)$and \mathcal{O}_{φ} is the $k Q$-module whose underlying \mathcal{O} module is just \mathcal{O} and on which Q acts via φ. In his PhD thesis, Robert

Hartmann developed the theory of endo-monomial $\mathcal{O} P$-modules. However, the following question remained open.

Question: Does there exist an indecomposable endo-monomial $\mathcal{O} P$-module L with vertex P which is not an endo-permutation, i.e., such that $\operatorname{End}_{\mathcal{O}}(L)$ is not a permutation $\mathcal{O} P$-module. The answer is "no" if P is abelian. See [Hartmann: Endo-monomial modules over p-groups and their classification in the abelian case; J. Algebra 274 (2004), 564—586].
6. (R) Let p be a prime and let k be field of characteristic p. Further, let P and Q be p-groups $f: U \rightarrow V$ a morphism in the category of finite (Q, P)-bisets. Show that f induces a natural transformation between the two functors T_{U} and T_{V} from $\underline{\operatorname{perm}}_{k}(P)$ to $\underline{\operatorname{perm}}_{k}(Q)$.

