The third definition of Green biset functor

Topics in Representation Theory: Biset Functors
J. Miguel Calderón León
calderonl@matmor.unam.mx
I. Preliminaries
2. Example

The definition of Green biset functor [Bou

Definition (Bouc)

Let $A \in \mathcal{F}_{D, R}$ is a Green biset functor if it is equipped with bilinear products $A(G) \times A(H) \longrightarrow A(G \times H)$ denoted by $(a, b) \longmapsto a \times b$, for groups G, H in \mathcal{D}, and an element $\xi_{A} \in A(1)$, satisfying the following conditions:
> (1) Associativity. Let G, H and K be groups in \mathcal{D}. If we consider the canonical
> isomorphism from $G \times(H \times K)$ to $(G \times H) \times K$, then for any $a \in A(G)$,
> $b \in A(H)$ and $c \in A(K)$

2 Identity element. Let G be a group in \mathcal{D} and consider the canonical isomornhisms $1 \times G \longrightarrow G$ and $G \times 1 \longrightarrow G$. Then for anv $a \in A(G)$

The definition of Green biset functor [Bou

Definition (Bouc)

Let $A \in \mathcal{F}_{D, R}$ is a Green biset functor if it is equipped with bilinear products $A(G) \times A(H) \longrightarrow A(G \times H)$ denoted by $(a, b) \longmapsto a \times b$, for groups G, H in \mathcal{D}, and an element $\xi_{A} \in A(1)$, satisfying the following conditions:
(1) Associativity. Let G, H and K be groups in \mathcal{D}. If we consider the canonical isomorphism from $G \times(H \times K)$ to $(G \times H) \times K$, then for any $a \in A(G)$, $b \in A(H)$ and $c \in A(K)$

$$
(a \times b) \times c=A\left(I S O_{G \times(H \times K)}^{(G \times H) \times K}\right)(a \times(b \times c))
$$

(2) Identity element. Let G be a group in \mathcal{D} and consider the canonical isomorphisms $1 \times G \longrightarrow G$ and $G \times 1 \longrightarrow G$. Then for any $a \in A(G)$
\square

The definition of Green biset functor [Bou

Definition (Bouc)

Let $A \in \mathcal{F}_{D, R}$ is a Green biset functor if it is equipped with bilinear products $A(G) \times A(H) \longrightarrow A(G \times H)$ denoted by $(a, b) \longmapsto a \times b$, for groups G, H in \mathcal{D}, and an element $\xi_{A} \in A(1)$, satisfying the following conditions:
(1) Associativity. Let G, H and K be groups in \mathcal{D}. If we consider the canonical isomorphism from $G \times(H \times K)$ to $(G \times H) \times K$, then for any $a \in A(G)$, $b \in A(H)$ and $c \in A(K)$

$$
(a \times b) \times c=A\left(I S O_{G \times(H \times K)}^{(G \times H) \times K}\right)(a \times(b \times c)) .
$$

(2) Identity element. Let G be a group in \mathcal{D} and consider the canonical isomorphisms $1 \times G \longrightarrow G$ and $G \times 1 \longrightarrow G$. Then for any $a \in A(G)$

$$
a=A\left(\operatorname{Iso}_{1 \times G}^{G}\left(\xi_{A} \times a\right)=A\left(\operatorname{Iso}_{G \times 1}^{G}\left(a \times \xi_{A}\right)\right.\right.
$$

Definition

(3) Functoriality. If $\varphi: G \longrightarrow G^{\prime}$ and $\psi: H \longrightarrow H^{\prime}$ are morphisms in $R \mathcal{D}$, then for any $a \in A(G)$ and $b \in A(H)$

$$
A(\varphi \times \psi)(a \times b)=A(\varphi)(a) \times A(\psi)(b)
$$

The definition of Green biset functor [Ron

Definition (Romero Thesis)

Definition 2. Let $A \in \mathcal{F}_{D, R}$, is a Green biset functor if $A(H)$ is an R-algebra with unity , for each group H in \mathcal{D}, and satisfies the following. If K and G are groups
in \mathcal{D} and $\varphi: K \longrightarrow G$ is a group homomorphism, then:
a ring homomorphism.

The definition of Green biset functor [Ron

Definition (Romero Thesis)

Definition 2. Let $A \in \mathcal{F}_{D, R}$, is a Green biset functor if $A(H)$ is an R-algebra with unity, for each group H in \mathcal{D}, and satisfies the following. If K and G are groups in \mathcal{D} and $\varphi: K \longrightarrow G$ is a group homomorphism, then:
(1) For the (K, G)-biset G, which we denote by $K^{\varphi} G_{G}$, the morphism $A\left({ }_{K^{\varphi}} G_{G}\right)$ is a ring homomorphism.
2. For the (G, K)-biset G, den oted by ${ }_{G} G \varphi K$, the morphism $A\left({ }_{G} G_{\varphi}{ }_{K}\right)$ satisfies the Frobenius identities for all $b \in A(G)$ and $a \in A(K)$,

The definition of Green biset functor [Ron

Definition (Romero Thesis)

Definition 2. Let $A \in \mathcal{F}_{D, R}$, is a Green biset functor if $A(H)$ is an R-algebra with unity, for each group H in \mathcal{D}, and satisfies the following. If K and G are groups in \mathcal{D} and $\varphi: K \longrightarrow G$ is a group homomorphism, then:
(1) For the (K, G)-biset G, which we denote by ${ }_{K^{\varphi}} G_{G}$, the morphism $A\left({ }_{K}{ }^{\varphi} G_{G}\right)$ is a ring homomorphism.
(2) For the (G, K)-biset G, denoted by ${ }_{G} G \varphi_{K}$, the morphism $A\left({ }_{G}{ }_{G} \varphi_{K}\right)$ satisfies the Frobenius identities for all $b \in A(G)$ and $a \in A(K)$,

$$
A\left({ }_{G} G_{\varphi_{K}}\right)(a) \cdot b=A\left({ }_{G} G_{\varphi_{K}}\right)\left(a \cdot A\left({ }_{K}{ }^{\varphi} G_{G}\right)(b)\right.
$$

where denotes the ring product on $A(G)$, resp. $A(K)$.

The definition of Green biset functor [Ron

Definition (Romero Thesis)

Definition 2. Let $A \in \mathcal{F}_{D, R}$, is a Green biset functor if $A(H)$ is an R-algebra with unity, for each group H in \mathcal{D}, and satisfies the following. If K and G are groups in \mathcal{D} and $\varphi: K \longrightarrow G$ is a group homomorphism, then:
(1) For the (K, G)-biset G, which we denote by ${ }_{K^{\varphi}} G_{G}$, the morphism $A\left({ }_{K^{\varphi}} G_{G}\right)$ is a ring homomorphism.
2. For the (G, K)-biset G, denoted by ${ }_{G} G \varphi_{K}$, the morphism $A\left({ }_{G} G \varphi_{K}\right)$ satisfies the Frobenius identities for all $b \in A(G)$ and $a \in A(K)$,

$$
\begin{gathered}
A\left({ }_{G} G \varphi_{K}\right)(a) \cdot b=A\left({ }_{G} G \varphi_{K}\right)\left(a \cdot A\left({ }_{K}{ }^{\varphi} G_{G}\right)(b)\right. \\
b \cdot A\left({ }_{G} G \varphi_{K}\right)(a)=A\left({ }_{G} G \varphi_{K}\right) A\left({ }_{K^{\varphi}} G_{G}\right)(b) \cdot a
\end{gathered}
$$

where \cdot denotes the ring product on $A(G)$, resp. $A(K)$.

Equivalent

Lemma (Lemma 4.2.3 in Romero Thesis [2])

The two previous definitions are equivalent.

Demostración.

First, we star by Definition Bouc, the ring structure of $A(H)$ is given by

$$
a \cdot b=A\left(I s o_{\Delta(H)}^{H} \circ \operatorname{Res}_{\Delta(H)}^{H \times H}\right)(a \times b),
$$

for a and b in $A(H)$, with the unity given by $A\left(I n f_{1}^{H}\right)(\xi)$.
\square
$A(G) \times A(H) \longrightarrow A(G \times H)$ is given by

$$
a \times b=A\left(G \times H^{p_{1}} G_{G}\right)(a) \cdot A\left(G \times H^{p_{2}} H_{H}\right)(b)
$$

for $a \in A(G)$ and $b \in A(H)$, with the identity element given by the unity of A(1).

Equivalent

Lemma (Lemma 4.2.3 in Romero Thesis [2])

The two previous definitions are equivalent.

Demostración.

First, we star by Definition Bouc, the ring structure of $A(H)$ is given by

$$
a \cdot b=A\left(I s o_{\Delta(H)}^{H} \circ \operatorname{Res}_{\Delta(H)}^{H \times H}\right)(a \times b)
$$

for a and b in $A(H)$, with the unity given by $A\left(\operatorname{lnf} f_{1}^{H}\right)(\xi)$.
Conversely, starting by Definition Romero, the product of $A(G) \times A(H) \longrightarrow A(G \times H)$ is given by

$$
a \times b=A\left({ }_{G \times H^{p}{ }^{p}} G_{G}\right)(a) \cdot A\left(G^{\prime} \times H^{p_{2}} H_{H}\right)(b)
$$

for $a \in A(G)$ and $b \in A(H)$, with the identity element given by the unity of $A(1)$.

Proof

First, we will show that Definition Romero implies Definition Bouc. To do this, we first need to define the functor \times. Let G and H be elements of \mathcal{D}. We define the function as follows:

$$
\begin{aligned}
\times: A(G) \times A(H) & \longrightarrow A(G \times H) \\
(a, b) & \longmapsto A\left(G \times H^{p_{1}} G_{G}\right)(a) \cdot A\left(G \times H^{p_{2}} H_{H}\right)(b) .
\end{aligned}
$$

where p_{1} and p_{2} represent the first and second projections, respectively. Now, we will demonstrate that \times satisfies the following properties:

- R-bilinearity: For all G and H in \mathcal{D}, the function

$$
\times: A(G) \times A(G) \longrightarrow A(G \times H)
$$

is R-linear, since $A\left({ }_{G \times H^{p_{2}}} H_{H}\right)$ and $A\left({ }_{G \times H^{p_{1}}} G_{G}\right)$ are morphisms of R-algebras.

- Functoriality: By the bilinearity of \times and Bouc's decomposition it suffices to demonstrate naturality for the elementary biset. Let G, H, and L be elements of \mathcal{D}, and let ${ }_{L} X_{G}$ be an elementary (L, G)-biset. We want to prove that the following diagram commutes:

In other words, we need to show that:

- Functoriality: By the bilinearity of \times and Bouc's decomposition it suffices to demonstrate naturality for the elementary biset. Let G, H, and L be elements of \mathcal{D}, and let ${ }_{L} X_{G}$ be an elementary (L, G)-biset. We want to prove that the following diagram commutes:

In other words, we need to show that:

$$
A\left(L \times H^{p_{1}} L_{L} \circ_{L} X_{G}\right)(a) \cdot A\left(L \times H^{p_{2}} H_{H}\right)(b)
$$

is equal to

- Functoriality: By the bilinearity of \times and Bouc's decomposition it suffices to demonstrate naturality for the elementary biset. Let G, H, and L be elements of \mathcal{D}, and let ${ }_{L} X_{G}$ be an elementary (L, G)-biset. We want to prove that the following diagram commutes:

In other words, we need to show that:

$$
A\left(L \times H^{p_{1}} L_{L} \circ_{L} X_{G}\right)(a) \cdot A\left(L \times H^{p_{2}} H_{H}\right)(b)
$$

is equal to

$$
A\left({ }_{L \times H} X \times H_{G \times H}\right)\left(A\left(G \times H^{p_{1}} G_{G}\right)(a) \cdot A\left(G \times H^{p_{2}} H_{H}\right)(b)\right) .
$$

Note that the elementary bisets are of the form ${ }_{L^{\varphi}} G_{G}$ with $\varphi: L \longrightarrow G$ being a group morphism, or of the form $L_{L} \rho_{G}$ with $\rho: G \longrightarrow L$ being a group morphism. Let's consider two cases:

- Case 1: ${ }_{L} X_{G}={ }_{L} \varphi G_{G}$.

By hypothesis, $A\left({ }_{L \times H^{(\varphi, 1)}} G \times H_{G \times H}\right)$ is an R-algebra morphism, then:

Note that the elementary bisets are of the form ${ }_{L^{\varphi}} G_{G}$ with $\varphi: L \longrightarrow G$ being a group morphism, or of the form $L_{L} \rho_{G}$ with $\rho: G \longrightarrow L$ being a group morphism. Let's consider two cases:

- Case 1: ${ }_{L} X_{G}={ }_{L} \varphi G_{G}$.

By hypothesis, $A\left({ }_{L \times H^{(\varphi, 1)}} G \times H_{G \times H}\right)$ is an R-algebra morphism, then:

$$
A\left({ }_{L \times H^{(\varphi, 1)}} G \times H_{G \times H}\right)\left(A\left(_{G \times H^{p_{1}}} G_{G}\right)(a) \cdot A\left({ }_{G \times H^{p_{2}}} H_{H}\right)(b)\right)
$$

is equal to

Note that the elementary bisets are of the form ${ }_{L} \mathcal{G}_{G}$ with $\varphi: L \longrightarrow G$ being a group morphism, or of the form $L_{L \rho_{G}}$ with $\rho: G \longrightarrow L$ being a group morphism. Let's consider two cases:

- Case 1: ${ }_{L} X_{G}={ }_{L} \varphi G_{G}$.

By hypothesis, $A\left({ }_{L \times H^{(\varphi, 1)}} G \times H_{G \times H}\right)$ is an R-algebra morphism, then:

$$
A\left((L \times H (\varphi , 1) G \times H _ { G \times H }) \left(A{\left.\left(G \times H^{p_{1}} G_{G}\right)(a) \cdot A\left(G \times H^{P_{2}} H_{H}\right)(b)\right), ~}\right.\right.
$$

is equal to

$$
A\left(\left(L \times H(\varphi, 1)^{\left.G \times H_{G \times H} \circ_{G \times H^{p_{1}}} G_{G}\right)(a) \cdot A\left(L_{L \times H(\varphi, 1)} G \times H_{G \times H} \circ_{G \times H^{p_{2}}} H_{H}\right)(b) . . ~ . ~}\right.\right.
$$

Now, we have:

Note that the elementary bisets are of the form ${ }_{L^{\varphi}} G_{G}$ with $\varphi: L \longrightarrow G$ being a group morphism, or of the form $L_{L \rho_{G}}$ with $\rho: G \longrightarrow L$ being a group morphism. Let's consider two cases:

- Case 1: ${ }_{L} X_{G}={ }_{L} \varphi G_{G}$.

By hypothesis, $A\left({ }_{L \times H^{(\varphi, 1)}} G \times H_{G \times H}\right)$ is an R-algebra morphism, then:

$$
A\left((L \times H (\varphi , 1) G \times H _ { G \times H }) \left(A{\left.\left(G \times H^{p_{1}} G_{G}\right)(a) \cdot A\left(G \times H^{P_{2}} H_{H}\right)(b)\right), ~}\right.\right.
$$

is equal to

$$
\begin{equation*}
A\left(L_{L \times H(\varphi, 1)} G \times H_{G \times H} \circ_{G \times H^{p_{1}}} G_{G}\right)(a) \cdot A\left(_{L \times H(\varphi, 1)} G \times H_{G \times H} \circ_{G \times H^{p_{2}}} H_{H}\right) \tag{b}
\end{equation*}
$$

Now, we have:

$$
\begin{aligned}
L \times H^{(\varphi, 1)} G \times H_{G \times H} \circ_{G \times H^{p_{1}}} G_{G} & \cong_{L \times H^{P_{1} \circ(\varphi, 1)}} G_{G} \\
& \cong_{L \times H^{\varphi} \circ P_{1}} G_{G}
\end{aligned}
$$

and

$$
L \times H^{(\varphi, 1)} G \times H_{G \times H} \circ_{G \times H^{p_{2}}} H_{H} \cong_{L \times H^{p_{2}}} H_{H}
$$

Therefore,

$$
A\left({ }_{L \times H}(\varphi, 1) G \times H_{G \times H}\right)\left(A{\left.\left(G \times H^{p_{1}} G_{G}\right)(a) \cdot A\left(G \times H^{p_{2}} H_{H}\right)(b)\right), ~}\right.
$$

is equal to

$$
A\left({ }_{L \times H^{p_{1}} L_{L}} \circ_{L \varphi} G_{G}\right)(a) \cdot A\left(L \times H^{p_{2}} H_{H}\right)(b) .
$$

Therefore the diagram commutes.

- Case 2: ${ }_{L} X_{G}={ }_{L} L_{\rho_{G}}$ We have the following diagram:

$$
\begin{aligned}
& \begin{array}{l}
\text { A(G) } \times A(H) \xrightarrow{\times} A(G \times H) \\
\left(A\left(L L \rho_{G}\right), I d_{H}\right) \downarrow \\
\end{array} \\
& A(L) \times A(H) \xrightarrow{\times} A(L \times H) .
\end{aligned}
$$

Let $a \in A(G)$ and $b \in A(H)$. By following the diagram, we obtain:

$$
\left(A\left({ }_{L} L_{\rho_{G}}\right)(a)\right) \times b=A\left(L \times H^{p_{1}} L_{L} O_{L} L_{\rho_{G}}\right)(a) \cdot A\left(L \times H^{p_{2}} H_{H}\right)(b),
$$

and we have that:

$$
A\left(L \times H L \times H_{(\rho, 1)}{ }_{G \times H}\right)(a \times b)
$$

is equal to

$$
A\left(L \times H \mathcal{L} \times H_{(\rho, 1)} G_{G H}\right)\left(A\left(_{\left.G \times H^{p_{1}} G_{G}\right)}\right)(a) \cdot A\left({ }_{\left.G \times H^{p_{2}} H_{H}\right)}(b)\right) .\right.
$$

$$
A\left(L \times H L \times H_{(\rho, 1)} G \times H\right)(a \times b)
$$

is equal to

One has

We conclude that

$$
A\left(L \times H L \times H_{(\rho, 1)} G \times H\right)(a \times b)
$$

is equal to

$$
A\left(L \times H \times H_{(\rho, 1)} G \times H\right)\left(A \left(_{\left.\left.G \times H^{p_{1}} G_{G}\right)(a) \cdot A\left({ }_{G \times H^{p_{2}}} H_{H}\right)(b)\right) . . . ~ . ~}\right.\right.
$$

One has

$$
L \times H^{p_{2}} H_{H} \cong_{G \times H^{(\rho, 1)}} L \times H_{L \times H} \circ_{L \times H^{p_{2}}} H_{H} .
$$

We conclude that

$$
A\left(L \times H \mathcal{L} \times H_{(\rho, 1)}{ }_{G \times H}\right)\left(A\left({ }_{\left.G \times H^{p_{1}} G_{G}\right)}\right)(a) \cdot A\left({ }_{G \times H^{p_{2}}} H_{H}\right)(b)\right)
$$

is equal to

$$
A\left(L \times H L \times H_{(\rho, 1)} G \times H\right)\left(A\left(G \times H^{P_{1}} G_{G}\right)(a) \cdot A\left(G \times H^{(\rho, 1)} L \times H_{L \times H} \circ_{L \times H^{P_{2}}} H_{H}\right)(b)\right) .
$$

Using Frobenius,

$$
A\left(L \times H \times H_{(\rho, 1)} G \times H\right)\left(A\left(G \times H^{P_{1}} G_{G}\right)(a) \cdot A\left(G \times H^{(\rho, 1)} L \times H_{L \times H} O_{L \times H^{P_{2}}} H_{H}\right)(b)\right) .
$$

Using Frobenius,

$$
A\left(L \times H \mathcal{L} \times H_{(\rho, 1)} G_{\times H}{ }^{\circ}{ }_{G \times H^{p_{1}}} G_{G}\right)(a) \cdot A\left(L \times H^{p_{2}} H_{H}\right)(b),
$$

note that,
are isomorphic as $((L \times H), G)$-biset. Therefore, the above diagran1 opmmutes.

$$
A\left(L \times H L \times H_{(\rho, 1)} G \times H\right)\left(A\left(G \times H^{P_{1}} G_{G}\right)(a) \cdot A\left(G \times H^{(\rho, 1)} L \times H_{L \times H} O_{L \times H^{P_{2}}} H_{H}\right)(b)\right) .
$$

Using Frobenius,

$$
A\left(L \times H \times H_{(\rho, 1)} G \times H{ }^{\circ}{ }_{G \times H^{p_{1}}} G_{G}\right)(a) \cdot A\left(L \times H^{p_{2}} H_{H}\right)(b),
$$

note that,

$$
L \times H L \times H_{(\rho, 1)}{ }_{G \times H} \circ_{G \times H^{p_{1}}} G_{G} \quad \text { and } \quad L \times H^{p_{1}} L_{L} \circ_{L} L_{\rho_{G}}
$$

are isomorphic as $((L \times H), G)$-biset. Therefore, the above diagram commutes.
identity element: Let ξ the multiplicative identity of $A(1)$. Let $G \in \mathcal{D}_{0}$ and $a \in A(G)$. Notice that:

$$
A\left({ }_{G} G_{G \times 1}\right)(a \times \xi)=A\left({ }_{G} G_{G \times 1}\right)\left(A\left({ }_{G \times 1} G_{G}\right)(a) \cdot A\left({ }_{G} 1_{1}\right)(1)\right)
$$

identity element: Let ξ the multiplicative identity of $A(1)$. Let $G \in \mathcal{D}_{0}$ and $a \in A(G)$. Notice that:

$$
\begin{aligned}
A\left({ }_{G} G_{G \times 1}\right)(a \times \xi) & =A\left({ }_{G} G_{G \times 1}\right)\left(A\left({ }_{G \times 1} G_{G}\right)(a) \cdot A\left({ }_{G} 1_{1}\right)(1)\right) \\
& \left.=A\left({ }_{G} G \times 1_{G \times 1}\right)\right)\left(A\left({ }_{G \times 1} G_{G}\right)(a) \cdot A\left({ }_{G} 1_{1}\right)(1)\right)
\end{aligned}
$$

identity element: Let ξ the multiplicative identity of $A(1)$. Let $G \in \mathcal{D}_{0}$ and $a \in A(G)$. Notice that:

$$
\begin{aligned}
A\left({ }_{G} G_{G \times 1}\right)(a \times \xi) & =A\left({ }_{G} G_{G \times 1}\right)\left(A\left({ }_{G \times 1} G_{G}\right)(a) \cdot A\left({ }_{G} 1_{1}\right)(1)\right) \\
& \left.=A\left({ }_{G} G \times 1_{G \times 1}\right)\right)\left(A\left({ }_{G \times 1} G_{G}\right)(a) \cdot A\left({ }_{G} 1_{1}\right)(1)\right) \\
& =A\left({ }_{G} G \times 1_{G \times 1} O_{G \times 1} G_{G}\right)(a) \cdot A\left({ }_{G} G \times 1_{G \times 1} \circ{ }_{G} 1_{1}\right)(1)
\end{aligned}
$$

where ξ_{G} is the multiplicative identity of $A(G)$.
identity element: Let ξ the multiplicative identity of $A(1)$. Let $G \in \mathcal{D}_{0}$ and $a \in A(G)$. Notice that:

$$
\begin{aligned}
A\left({ }_{G} G_{G \times 1}\right)(a \times \xi) & =A\left({ }_{G} G_{G \times 1}\right)\left(A\left({ }_{G \times 1} G_{G}\right)(a) \cdot A\left({ }_{G} 1_{1}\right)(1)\right) \\
& \left.=A\left({ }_{G} G \times 1_{G \times 1}\right)\right)\left(A\left({ }_{G \times 1} G_{G}\right)(a) \cdot A\left({ }_{G} 1_{1}\right)(1)\right) \\
& =A\left({ }_{G} G \times 1_{G \times 1} \circ{ }_{G \times 1} G_{G}\right)(a) \cdot A\left({ }_{G} G \times 1_{G \times 1} \circ{ }_{G} 1_{1}\right)(1) \\
& =A\left({ }_{G} G \times 1_{G}\right)(a) \cdot A\left({ }_{G} G \times 1_{1}\right)(\xi) \\
& =A\left({ }_{G} G_{G}\right)(a) \cdot \xi_{G} \\
& =a
\end{aligned}
$$

where ξ_{G} is the multiplicative identity of $A(G)$.

Modules

Definition

Let $A \in \mathcal{F}_{D, R}^{\mu}$. A biset functor M is an A-module, if $M(H)$ is a $A(H)$-module that satisfies the following.
homomorphism, then:
(1) For all $a \in A(G)$ and $m \in M(G)$ one has

Modules

Definition

Let $A \in \mathcal{F}_{D, R}^{\mu}$. A biset functor M is an A-module, if $M(H)$ is a $A(H)$-module that satisfies the following. Let K and G are groups in \mathcal{D} and $\varphi: K \longrightarrow G$ is a group homomorphism, then:
(1) For all $a \in A(G)$ and $m \in M(G)$ one has

$$
M\left(K^{\varphi} G_{G}\right)(a \cdot m)=A\left(K^{\varphi} G_{G}\right)(a) \cdot M\left(K^{\varphi} G_{G}\right)(m) .
$$

Modules

Definition

Let $A \in \mathcal{F}_{D, R}^{\mu}$. A biset functor M is an A-module, if $M(H)$ is a $A(H)$-module that satisfies the following. Let K and G are groups in \mathcal{D} and $\varphi: K \longrightarrow G$ is a group homomorphism, then:
(1) For all $a \in A(G)$ and $m \in M(G)$ one has

$$
M\left({ }_{\kappa}{ }^{\varphi} G_{G}\right)(a \cdot m)=A\left({ }_{\kappa^{\varphi}} G_{G}\right)(a) \cdot M\left({ }_{\kappa^{\varphi}} G_{G}\right)(m) .
$$

(2) For the (G, K)-biset G, denoted by ${ }_{G} G_{\varphi_{G}}$, the morphism $A\left({ }_{G} G \varphi_{G}\right)$ satisfies the Frobenius identities for all $a \in A(K), b \in A(G), m \in M(G)$ and $n \in M(K)$,

$$
A\left({ }_{G} G_{\varphi}{ }_{K}\right)(a) \cdot m=M\left({ }_{G} G \varphi_{G}\right)\left(a \cdot M\left(K_{K} G_{G}\right)(m)\right)
$$

$$
b \cdot M\left({ }_{G} G_{\varphi}{ }_{K}\right)(n)=M\left({ }_{G} G_{\varphi} G\right)\left(A\left({ }_{K} \varphi G_{G}\right)(b) \cdot n\right)
$$

where denotes the ring product on $M(G)$, resp. $M(K)$.

Modules

Definition

Let $A \in \mathcal{F}_{D, R}^{\mu}$. A biset functor M is an A-module, if $M(H)$ is a $A(H)$-module that satisfies the following. Let K and G are groups in \mathcal{D} and $\varphi: K \longrightarrow G$ is a group homomorphism, then:
(1) For all $a \in A(G)$ and $m \in M(G)$ one has

$$
M\left({ }_{\kappa}{ }^{\varphi} G_{G}\right)(a \cdot m)=A\left({ }_{\kappa^{\varphi}} G_{G}\right)(a) \cdot M\left({ }_{\kappa^{\varphi}} G_{G}\right)(m) .
$$

2. For the (G, K)-biset G, denoted by ${ }_{G} G \varphi_{G}$, the morphism $A\left({ }_{G} G \varphi_{G}\right)$ satisfies the Frobenius identities for all $a \in A(K), b \in A(G), m \in M(G)$ and $n \in M(K)$,

$$
\begin{gathered}
A\left({ }_{G} G_{\varphi_{K}}\right)(a) \cdot m=M\left({ }_{G} G \varphi_{G}\right)\left(a \cdot M\left({ }_{K^{\varphi}} G_{G}\right)(m)\right) \\
b \cdot M\left({ }_{G} G \varphi_{K}\right)(n)=M\left({ }_{G} G \varphi_{G}\right)\left(A\left({ }_{K^{\varphi}} G_{G}\right)(b) \cdot n\right)
\end{gathered}
$$

where • denotes the ring product on $M(G)$, resp. $M(K)$.

Burnside Functor

The Burnside group $B_{\mathcal{D}}(G)$ is the Grothendieck group of the category \mathcal{D} with respect to the disjoint unions of morphisms. The $R-\operatorname{Mod} R B_{\mathcal{D}}(G):=R \otimes_{\mathbb{Z}} B_{\mathcal{D}}(G)$ is a ring with unity. The multiplication operation is defined as follows:

[^0]
Burnside Functor

The Burnside group $B_{\mathcal{D}}(G)$ is the Grothendieck group of the category \mathcal{D} with respect to the disjoint unions of morphisms. The R - $\operatorname{Mod} R B_{\mathcal{D}}(G):=R \otimes_{\mathbb{Z}} B_{\mathcal{D}}(G)$ is a ring with unity. The multiplication operation is defined as follows:

$$
[X] \cdot[Y]:=[X \times Y]
$$

where X and Y are G-set. The unity element is the G-set $[\cdot]$.

The Fibered Burnside Functor

Let A be a multiplicative abelian group,

Definition

Let X be a set, we call X an A-fibered G-set if X is an $A \times G$-set such that the action of A is free with A-orbits are finitely.

We denote by ${ }_{G}$ Set A the category of A-fibered G-sets. Here the morphisms are given by $A \times G$-equivariant functions. The operation of disjoint union of sets induces a coproduct on ${ }_{G}$ set A

- $B^{A}(G)$ the Grothendieck group of this category with respect to disjoint unions.
- Let be a (G, H)-biset. we define the map

$$
\begin{aligned}
R B^{A}(U): R B^{A}(H) & \longrightarrow R B^{A}(G) \\
{[X] } & \longmapsto\left[U \otimes_{A H} X\right] .
\end{aligned}
$$

where $\left[U \otimes_{A H} X\right]$ are the elements of $\left[U \circ_{H} X\right]$ such that the action of A is free

The group $R B^{A}(G)$ has a structure ring via
where X, Y are objects of ${ }_{G} \operatorname{set}^{A}$.

- Let be a (G, H)-biset. we define the map

$$
\begin{aligned}
R B^{A}(U): R B^{A}(H) & \longrightarrow R B^{A}(G) \\
{[X] } & \longmapsto\left[U \otimes_{A H} X\right] .
\end{aligned}
$$

where $\left[U \otimes_{A H} X\right]$ are the elements of $\left[U \circ_{H} X\right]$ such that the action of A is free

The group $R B^{A}(G)$ has a structure ring via :

$$
[X] \cdot[Y]:=\left[\left(X \bigotimes_{A} Y\right)\right]
$$

where X, Y are objects of ${ }_{G}$ set A.

The slice Burnside functor

Definition

Let G finite group. The category of morphisms of G-sets. to be denoted G-Mor, consist

- $\operatorname{Obj}(G-M o r)=$ the morphisms of G-sets.
- Let $f: A \longrightarrow B$ and $g: A^{\prime} \longrightarrow B^{\prime}$ be morphisms of G-sets.

$$
\operatorname{Hom}_{G-\text { Mor }}\left(A \xrightarrow{f} B, A^{\prime} \xrightarrow{g} B^{\prime}\right):=\left\{(h, k) \mid h, k \in(G-M o r)_{0} \text { and }(1)\right\}
$$

The slice Burnside functor

Definition

Let G finite group. The category of morphisms of G-sets. to be denoted G-Mor, consist

- $\operatorname{Obj}(G-M o r)=$ the morphisms of G-sets.
- Let $f: A \longrightarrow B$ and $g: A^{\prime} \longrightarrow B^{\prime}$ be morphisms of G-sets.

$$
\begin{aligned}
& \operatorname{Hom}_{G-\operatorname{Mor}}\left(A \xrightarrow{f} B, A^{\prime} \xrightarrow{g} B^{\prime}\right):=\left\{(h, k) \mid h, k \in(G-M o r)_{o} \text { and (1) }\right\}
\end{aligned}
$$

- The composition is the composition of functions

The slice Burnside functor

Definition

Let G finite group. The category of morphisms of G-sets. to be denoted G-Mor, consist

- $\operatorname{Obj}(G-M o r)=$ the morphisms of G-sets.
- Let $f: A \longrightarrow B$ and $g: A^{\prime} \longrightarrow B^{\prime}$ be morphisms of G-sets.

$$
\begin{aligned}
& \operatorname{Hom}_{G-\operatorname{Mor}}\left(A \xrightarrow{f} B, A^{\prime} \xrightarrow{g} B^{\prime}\right):=\left\{(h, k) \mid h, k \in(G-M o r)_{o} \text { and (1) }\right\}
\end{aligned}
$$

- The composition is the composition of functions
- $(1,1)$ is the identity of $A \xrightarrow{J}$.

The slice Burnside functor

Definition

Let G finite group. The category of morphisms of G-sets. to be denoted G-Mor, consist

- $\operatorname{Obj}(G-M o r)=$ the morphisms of G-sets.
- Let $f: A \longrightarrow B$ and $g: A^{\prime} \longrightarrow B^{\prime}$ be morphisms of G-sets.

$$
\begin{aligned}
& \operatorname{Hom}_{G-\operatorname{Mor}}\left(A \xrightarrow{f} B, A^{\prime} \xrightarrow{g} B^{\prime}\right):=\left\{(h, k) \mid h, k \in(G-M o r)_{o} \text { and (1) }\right\}
\end{aligned}
$$

- The composition is the composition of functions
- $(1,1)$ is the identity of $A \xrightarrow{f} B$.

Let $A \xrightarrow{f} B$ and $A^{\prime} \xrightarrow{g} B^{\prime}$ elements of G-Mor. We define the disjoint union of these morphisms as follows:

$$
\left.\begin{array}{r}
A \sqcup A^{\prime} \xrightarrow{f \sqcup f^{\prime}} B \sqcup B \\
x
\end{array}\right)
$$

where

$$
f \sqcup f^{\prime}(x)=\left\{\begin{array}{r}
f(x) \text { if } x \in A \\
f^{\prime}(x) \text { if } x \in A^{\prime}
\end{array}\right.
$$

\sqcup is a cooproduct of G-Mor.

the عategory G-Mor with respect to disjoint unions of morphisms.

 DefinitionLet U be a (G, H)-biset, we define the map

Let $A \xrightarrow{f} B$ and $A^{\prime} \xrightarrow{g} B^{\prime}$ elements of G-Mor. We define the disjoint union of these morphisms as follows:

$$
\begin{array}{r}
A \sqcup A^{\prime} \xrightarrow{f \sqcup f^{\prime}} B \sqcup B \\
x \longmapsto f \sqcup f^{\prime}(x)
\end{array}
$$

where

$$
f \sqcup f^{\prime}(x)=\left\{\begin{array}{r}
f(x) \text { if } x \in A \\
f^{\prime}(x) \text { if } x \in A^{\prime}
\end{array}\right.
$$

\sqcup is a cooproduct of G-Mor.
The slice Burnside group of G, denotade by $\Xi(G)$, is the Grothendieck group of the category G-Mor with respect to disjoint unions of morphisms.

Definition

Let U be a (G, H)-biset, we define the map

$$
\begin{aligned}
& \Xi(U): \Xi(G) \longrightarrow \Xi(H) \\
& \quad(X \xrightarrow{f} Y) \longmapsto\left(U \times_{G} X \xrightarrow{U \times_{G} f} U \times_{G} Y\right),
\end{aligned}
$$

where $U \times{ }_{G} X$ and $U \times_{G} Y$ have the natural action of H-sets coming from the action of H on U.

Let $X \xrightarrow{f} Y$ and $Z \xrightarrow{g} W$ be elements of G-Mor. We define

$$
\begin{aligned}
& X \times Z \xrightarrow{f \times g} Y \times W \\
& (x, y) \longmapsto(f(x), g(x))
\end{aligned}
$$

(2)
(3)

The group $\Xi(G)$ has struture of ring via

$$
[X \xrightarrow{f} Y] \cdot[Z \xrightarrow{g} W]=[X \times Z \xrightarrow{f \times g} Y \times W]
$$

The element idenity is $\{\cdot\} \xrightarrow{1}\{\cdot\}$.

The shifted Functor

Let K be a finite group. The Green biset functor A over $R \mathcal{D}$ can be shifted by K. This gives a new Green biset functor, A_{K}, defined for a finite group G by

$$
A_{K}(G)=A(G \times K)
$$

For finite groups G and H and a finite (H, G)-biset U, the map

$$
A_{K}(U): A_{K}(G) \longrightarrow A_{K}(H)
$$

is the map $A(U \times K)$, where $U \times K$ is viewed as a $(H \times K, G \times K)$-biset in the obvious way.
Moreover, for a finite group $G, A_{K}(G)=A(G \times K)$ is a R-algebra whit unity.

Bibliografy

[1] Serge Bouc. Bisets as categories and tensor product of induced bimodules. Applied Categorical Structures, 18(5):517-521, 2010.
[2] Nadia Romero. Funtores de Mackey. Tesis de doctorado, UNAM, 2011.

Thank you!

[^0]: where X and Y are G-set. The unity element is the G-set [.].

