

The third definition of Green biset functor

Topics in Representation Theory: Biset Functors

I. Miguel Calderón León

calderonl@matmor.unam.mx

I • Preliminaries

2. Example

Definition (Bouc)

Let $A \in \mathcal{F}_{D,R}$ is a Green biset functor if it is equipped with bilinear products $A(G) \times A(H) \longrightarrow A(G \times H)$ denoted by $(a, b) \longmapsto a \times b$, for groups G, H in \mathcal{D} , and an element $\xi_A \in A(1)$, satisfying the following conditions:

Associativity. Let G, H and K be groups in \mathcal{D} . If we consider the canonical isomorphism from $G \times (H \times K)$ to $(G \times H) \times K$, then for any $a \in A(G)$, $b \in A(H)$ and $c \in A(K)$

$$(a \times b) \times c = A(Iso_{G \times (H \times K)}^{(G \times H) \times K})(a \times (b \times c)).$$

Identity element. Let G be a group in \mathcal{D} and consider the canonical isomorphisms $1 \times G \longrightarrow G$ and $G \times 1 \longrightarrow G$. Then for any $a \in A(G)$

$$a = A(Iso_{1 \times G}^{G}(\xi_{A} \times a) = A(Iso_{G \times 1}^{G}(a \times \xi_{A}))$$

Definition (Bouc)

Let $A \in \mathcal{F}_{D,R}$ is a Green biset functor if it is equipped with bilinear products $A(G) \times A(H) \longrightarrow A(G \times H)$ denoted by $(a, b) \longmapsto a \times b$, for groups G, H in \mathcal{D} , and an element $\xi_A \in A(1)$, satisfying the following conditions:

• Associativity. Let G, H and K be groups in \mathcal{D} . If we consider the canonical isomorphism from $G \times (H \times K)$ to $(G \times H) \times K$, then for any $a \in A(G)$, $b \in A(H)$ and $c \in A(K)$

$$(a \times b) \times c = A(Iso_{G \times (H \times K)}^{(G \times H) \times K})(a \times (b \times c)).$$

2 Identity element. Let G be a group in \mathcal{D} and consider the canonical isomorphisms $1 \times G \longrightarrow G$ and $G \times 1 \longrightarrow G$. Then for any $a \in A(G)$

$$a = A(Iso_{1 \times G}^{G}(\xi_{A} \times a) = A(Iso_{G \times 1}^{G}(a \times \xi_{A}))$$

Definition (Bouc)

Let $A \in \mathcal{F}_{D,R}$ is a Green biset functor if it is equipped with bilinear products $A(G) \times A(H) \longrightarrow A(G \times H)$ denoted by $(a, b) \longmapsto a \times b$, for groups G, H in \mathcal{D} , and an element $\xi_A \in A(1)$, satisfying the following conditions:

● Associativity. Let *G*, *H* and *K* be groups in \mathcal{D} . If we consider the canonical isomorphism from *G* × (*H* × *K*) to (*G* × *H*) × *K*, then for any *a* ∈ *A*(*G*), *b* ∈ *A*(*H*) and *c* ∈ *A*(*K*)

$$(a \times b) \times c = A(Iso_{G \times (H \times K)}^{(G \times H) \times K})(a \times (b \times c)).$$

2 Identity element. Let *G* be a group in \mathcal{D} and consider the canonical isomorphisms $1 \times G \longrightarrow G$ and $G \times 1 \longrightarrow G$. Then for any $a \in A(G)$

$$a = A(Iso_{1 \times G}^{G}(\xi_{A} \times a)) = A(Iso_{G \times 1}^{G}(a \times \xi_{A}))$$

Definition

③ Functoriality. If $\varphi : G \longrightarrow G'$ and $\psi : H \longrightarrow H'$ are morphisms in $R\mathcal{D}$, then for any $a \in A(G)$ and $b \in A(H)$

 $\mathsf{A}(\varphi \times \psi)(a \times b) = \mathsf{A}(\varphi)(a) \times \mathsf{A}(\psi)(b).$

Definition (Romero Thesis)

Definition 2. Let $A \in \mathcal{F}_{D,R}$, is a Green biset functor if A(H) is an *R*-algebra with unity, for each group *H* in \mathcal{D} , and satisfies the following. If *K* and *G* are groups in \mathcal{D} and $\varphi : K \longrightarrow G$ is a group homomorphism, then:

• For the (K, G)-biset G, which we denote by $_{K^{\varphi}}G_G$, the morphism $A(_{K^{\varphi}}G_G)$ is a ring homomorphism.

Solution For the (G, K)-biset G, denoted by ${}_{G}G_{{}^{\varphi}K}$, the morphism $A({}_{G}G_{{}^{\varphi}K})$ satisfies the Frobenius identities for all $b \in A(G)$ and $a \in A(K)$,

$$A(_{G}G_{\varphi_{K}})(a) \cdot b = A(_{G}G_{\varphi_{K}})(a \cdot A(_{K^{\varphi}}G_{G})(b))$$
$$b \cdot A(_{G}G_{\varphi_{K}})(a) = A(_{G}G_{\varphi_{K}})A(_{K^{\varphi}}G_{G})(b) \cdot a$$

Definition (Romero Thesis)

Definition 2. Let $A \in \mathcal{F}_{D,R}$, is a Green biset functor if A(H) is an *R*-algebra with unity, for each group *H* in \mathcal{D} , and satisfies the following. If *K* and *G* are groups in \mathcal{D} and $\varphi : K \longrightarrow G$ is a group homomorphism, then:

• For the (K, G)-biset G, which we denote by $_{K^{\varphi}}G_G$, the morphism $A(_{K^{\varphi}}G_G)$ is a ring homomorphism.

2 For the (G, K)-biset G, denoted by ${}_{G}G_{{}^{\varphi}K}$, the morphism $A({}_{G}G_{{}^{\varphi}K})$ satisfies the Frobenius identities for all $b \in A(G)$ and $a \in A(K)$,

$$A(_{G}G_{\varphi_{K}})(a) \cdot b = A(_{G}G_{\varphi_{K}})(a \cdot A(_{K^{\varphi}}G_{G})(b))$$
$$b \cdot A(_{G}G_{\varphi_{K}})(a) = A(_{G}G_{\varphi_{K}})A(_{K^{\varphi}}G_{G})(b) \cdot a$$

Definition (Romero Thesis)

Definition 2. Let $A \in \mathcal{F}_{D,R}$, is a Green biset functor if A(H) is an *R*-algebra with unity, for each group *H* in \mathcal{D} , and satisfies the following. If *K* and *G* are groups in \mathcal{D} and $\varphi : K \longrightarrow G$ is a group homomorphism, then:

• For the (K, G)-biset G, which we denote by $_{K^{\varphi}}G_{G}$, the morphism $A(_{K^{\varphi}}G_{G})$ is a ring homomorphism.

2 For the (G, K)-biset G, denoted by ${}_{G}G_{\varphi_{K}}$, the morphism $A({}_{G}G_{\varphi_{K}})$ satisfies the Frobenius identities for all $b \in A(G)$ and $a \in A(K)$,

$$A(_{G}G_{\varphi_{K}})(a) \cdot b = A(_{G}G_{\varphi_{K}})(a \cdot A(_{K^{\varphi}}G_{G})(b))$$
$$b \cdot A(_{G}G_{\varphi_{K}})(a) = A(_{G}G_{\varphi_{K}})A(_{K^{\varphi}}G_{G})(b) \cdot a$$

Definition (Romero Thesis)

Definition 2. Let $A \in \mathcal{F}_{D,R}$, is a Green biset functor if A(H) is an *R*-algebra with unity, for each group *H* in \mathcal{D} , and satisfies the following. If *K* and *G* are groups in \mathcal{D} and $\varphi : K \longrightarrow G$ is a group homomorphism, then:

- For the (K, G)-biset G, which we denote by $_{K^{\varphi}}G_{G}$, the morphism $A(_{K^{\varphi}}G_{G})$ is a ring homomorphism.
- Por the (G, K)-biset G, denoted by _GG_{𝒫K}, the morphism A(_GG_{𝒫K}) satisfies the Frobenius identities for all b ∈ A(G) and a ∈ A(K),

$$A(_{G}G_{\varphi_{K}})(a) \cdot b = A(_{G}G_{\varphi_{K}})(a \cdot A(_{K^{\varphi}}G_{G})(b))$$

$$b \cdot A(_{G}G_{\varphi_{K}})(a) = A(_{G}G_{\varphi_{K}})A(_{K^{\varphi}}G_{G})(b) \cdot a$$

Equivalent

Lemma (Lemma 4.2.3 in Romero Thesis [2])

The two previous definitions are equivalent.

Demostración.

First, we star by Definition Bouc, the ring structure of A(H) is given by

$$a \cdot b = A(Iso_{\Delta(H)}^{H} \circ Res_{\Delta(H)}^{H \times H})(a \times b),$$

for *a* and *b* in *A*(*H*), with the unity given by *A*(Inf_1^H)(ξ). Conversely, starting by Definition Romero, the product of $A(G) \times A(H) \longrightarrow A(G \times H)$ is given by

 $a \times b = A(_{G \times H^{p_1}}G_G)(a) \cdot A(_{G \times H^{p_2}}H_H)(b)$

for $a \in A(G)$ and $b \in A(H)$, with the identity element given by the unity of A(1).

Equivalent

Lemma (Lemma 4.2.3 in Romero Thesis [2])

The two previous definitions are equivalent.

Demostración.

First, we star by Definition Bouc, the ring structure of A(H) is given by

$$a \cdot b = A(Iso_{\Delta(H)}^{H} \circ Res_{\Delta(H)}^{H \times H})(a \times b),$$

for a and b in A(H), with the unity given by $A(Inf_1^H)(\xi)$. Conversely, starting by Definition Romero, the product of $A(G) \times A(H) \longrightarrow A(G \times H)$ is given by

$$a \times b = \mathsf{A}(_{G \times H^{p_1}}G_G)(a) \cdot \mathsf{A}(_{G \times H^{p_2}}H_H)(b)$$

for $a \in A(G)$ and $b \in A(H)$, with the identity element given by the unity of A(1).

J. Miguel Calderón León

Proof

First, we will show that Definition Romero implies Definition Bouc. To do this, we first need to define the functor \times . Let *G* and *H* be elements of \mathcal{D} . We define the function as follows:

$$\begin{array}{c} \times : \mathsf{A}(\mathsf{G}) \times \mathsf{A}(\mathsf{H}) \longrightarrow \mathsf{A}(\mathsf{G} \times \mathsf{H}) \\ (a,b) \longmapsto \mathsf{A}_{(\mathsf{G} \times \mathsf{H}^{p_1}}\mathsf{G}_\mathsf{G})(a) \cdot \mathsf{A}_{(\mathsf{G} \times \mathsf{H}^{p_2}}\mathsf{H}_\mathsf{H})(b). \end{array}$$

where p_1 and p_2 represent the first and second projections, respectively. Now, we will demonstrate that \times satisfies the following properties:

• *R*-bilinearity: For all *G* and *H* in \mathcal{D} , the function

 $\times : \mathsf{A}(G) \times \mathsf{A}(G) \longrightarrow \mathsf{A}(G \times H)$

is R-linear, since $A(_{G \times H^{p_2}}H_H)$ and $A(_{G \times H^{p_1}}G_G)$ are morphisms of R-algebras.

Functoriality: By the bilinearity of × and Bouc's decomposition it suffices to demonstrate naturality for the elementary biset.
Let G, H, and L be elements of D, and let LXG be an elementary (L, G)-biset. We want to prove that the following diagram commutes:

$$\begin{array}{c|c} A(G) \times A(H) \xrightarrow{\times} A(G \times H) \\ A_{(L}X_{G}), Id_{H}) & \downarrow & \downarrow \\ A(L) \times A(H) \xrightarrow{\times} A(L \times H). \end{array}$$

In other words, we need to show that:

 $A(_{L\times H^{P_1}}L_L \circ_L X_G)(a) \cdot A(_{L\times H^{P_2}}H_H)(b)$

is equal to

 $A(_{L\times H}X \times H_{G\times H})(A(_{G\times H^{p_1}}G_G)(a) \cdot A(_{G\times H^{p_2}}H_H)(b))$

Functoriality: By the bilinearity of × and Bouc's decomposition it suffices to demonstrate naturality for the elementary biset.
Let G, H, and L be elements of D, and let LXG be an elementary (L, G)-biset. We want to prove that the following diagram commutes:

$$\begin{array}{c} A(G) \times A(H) \xrightarrow{\times} A(G \times H) \\ A_{(L}X_{G}), Id_{H}) \\ \downarrow \\ A(L) \times A(H) \xrightarrow{\times} A(L \times H). \end{array}$$

In other words, we need to show that:

$$A\left(_{L\times H^{p_1}}L_L\circ_L X_G\right)(a)\cdot A(_{L\times H^{p_2}}H_H)(b)$$

is equal to

 $A(_{L\times H}X \times H_{G\times H})(A(_{G\times H^{p_1}}G_G)(a) \cdot A(_{G\times H^{p_2}}H_H)(b))$

Functoriality: By the bilinearity of × and Bouc's decomposition it suffices to demonstrate naturality for the elementary biset.
Let G, H, and L be elements of D, and let LXG be an elementary (L, G)-biset. We want to prove that the following diagram commutes:

$$\begin{array}{c} A(G) \times A(H) \xrightarrow{\times} A(G \times H) \\ A_{(L}X_{G}), Id_{H}) \\ \downarrow \\ A(L) \times A(H) \xrightarrow{\times} A(L \times H). \end{array}$$

In other words, we need to show that:

$$A(_{L\times H^{P_1}}L_L \circ_L X_G)(a) \cdot A(_{L\times H^{P_2}}H_H)(b)$$

is equal to

 $A(_{L\times H}X \times H_{G\times H})(A(_{G\times H^{p_1}}G_G)(a) \cdot A(_{G\times H^{p_2}}H_H)(b)).$

• Case 1: $_{L}X_{G} =_{L^{\varphi}} G_{G}$. By hypothesis, $A\left(_{L \times H^{(\varphi,1)}}G \times H_{G \times H}\right)$ is an *R*-algebra morphism, then:

```
A\left(_{L\times H^{(\varphi,1)}}G\times H_{G\times H}\right)\left(A(_{G\times H^{p_1}}G_G)(a)\cdot A(_{G\times H^{p_2}}H_H)(b)\right)
```

```
is equal to
```

 $\left(\sum_{L \times H^{(\varphi,1)}} G \times H_{G \times H} \circ_{G \times H^{P_1}} G_G \right) (a) \cdot A \left(\sum_{L \times H^{(\varphi,1)}} G \times H_{G \times H} \circ_{G \times H^{P_2}} H_H \right) (b)$

Nøw, we have:

 $_{L\times H^{(\varphi,1)}}G\times H_{G\times H}\circ_{G\times H^{P_1}}G_G\cong_{L\times H^{P_1}\circ(\varphi,1)}G_G$

έ_{L×H}φop₁ G_G, 🦯

• Case 1: $_{L}X_{G} =_{L^{\varphi}} G_{G}$. By hypothesis, $A\left(_{L \times H^{(\varphi,1)}}G \times H_{G \times H}\right)$ is an *R*-algebra morphism, then:

 $A\left(_{L\times H^{(\varphi,1)}}G\times H_{G\times H}\right)\left(A(_{G\times H^{p_1}}G_G)(a)\cdot A(_{G\times H^{p_2}}H_H)(b)\right)$

is equal to

 $\mathsf{A}\left(_{\mathsf{L}\times\mathsf{H}^{(\varphi,1)}}\mathsf{G}\times\mathsf{H}_{\mathsf{G}\times\mathsf{H}}\circ_{\mathsf{G}\times\mathsf{H}^{\mathsf{P}_{1}}}\mathsf{G}_{\mathsf{G}}\right)(a)\cdot\mathsf{A}\left(_{\mathsf{L}\times\mathsf{H}^{(\varphi,1)}}\mathsf{G}\times\mathsf{H}_{\mathsf{G}\times\mathsf{H}}\circ_{\mathsf{G}\times\mathsf{H}^{\mathsf{P}_{2}}}\mathsf{H}_{\mathsf{H}}\right)(b)$

Now, we have:

 $_{L\times H^{(\varphi,1)}}G\times H_{G\times H}\circ_{G\times H^{P_1}}G_G\cong_{L\times H^{P_1}\circ(\varphi,1)}G_G$

 $L \times H^{\varphi \circ P_1} G_G,$

and

 $_{\times H^{(\varphi_1)}}G \times H_{G \times H} \circ_{G \times H^{P_2}} H_H \cong_{L \times H^{P_2}} H_I$

• Case 1: $_{L}X_{G} =_{L^{\varphi}} G_{G}$. By hypothesis, $A\left(_{L \times H^{(\varphi,1)}}G \times H_{G \times H}\right)$ is an *R*-algebra morphism, then:

$$A\left(_{L\times H^{(\varphi,1)}}G\times H_{G\times H}\right)\left(A(_{G\times H^{p_1}}G_G)(a)\cdot A(_{G\times H^{p_2}}H_H)(b)\right)$$

is equal to

 $A\left(_{L\times H^{(\phi,1)}}G\times H_{G\times H}\circ_{G\times H^{p_{1}}}G_{G}\right)(a)\cdot A\left(_{L\times H^{(\phi,1)}}G\times H_{G\times H}\circ_{G\times H^{p_{2}}}H_{H}\right)(b).$

Now, we have:

 $_{L\times H^{(\varphi,1)}}G\times H_{G\times H}\circ_{G\times H^{P_1}}G_G\cong_{L\times H^{P_1}\circ(\varphi,1)}G_G$

 $L \times H^{\varphi \circ P_1} G_G,$

and

 $_{\times H^{(\varphi,1)}}G \times H_{G \times H} \circ_{G \times H^{P_2}} H_H \cong_{L \times H^{P_2}} H_H$

• Case 1: $_{L}X_{G} =_{L^{\varphi}} G_{G}$. By hypothesis, $A\left(_{L \times H^{(\varphi,1)}}G \times H_{G \times H}\right)$ is an *R*-algebra morphism, then:

$$A\left(_{L\times H^{(\varphi,1)}}G\times H_{G\times H}\right)\left(A(_{G\times H^{p_1}}G_G)(a)\cdot A(_{G\times H^{p_2}}H_H)(b)\right)$$

is equal to

 $A\left(_{L\times H^{(\varphi,1)}}G\times H_{G\times H}\circ_{G\times H^{p_{1}}}G_{G}\right)(a)\cdot A\left(_{L\times H^{(\varphi,1)}}G\times H_{G\times H}\circ_{G\times H^{p_{2}}}H_{H}\right)(b).$

Now, we have:

$$\underset{L\times H^{(\varphi,1)}}{\overset{}{}} G \times H_{G\times H} \circ_{G \times H^{p_1}} G_G \cong_{L \times H^{p_1 \circ (\varphi,1)}} G_G$$
$$\cong_{L \times H^{\varphi \circ p_1}} G_G,$$

and

 $_{L\times H^{(\varphi,1)}}G\times H_{G\times H}\circ_{G\times H^{P_{2}}}H_{H}\cong_{L\times H^{P_{2}}}H_{H}$

Therefore,

 $A\left(_{L\times H^{(\varphi,1)}}G\times H_{G\times H}\right)\left(A(_{G\times H^{P_1}}G_G)(a)\cdot A(_{G\times H^{P_2}}H_H)(b)\right)$

is equal to

$$\mathsf{A}\left(_{L\times H^{p_{1}}}\mathsf{L}_{L}\circ_{L^{\varphi}}\mathsf{G}_{\mathsf{G}}\right)(a)\cdot\mathsf{A}(_{L\times H^{p_{2}}}\mathsf{H}_{\mathsf{H}})(b)$$

Therefore the diagram commutes.

• Case 2: $_{L}X_{G} =_{L} L_{\rho_{G}}$ We have the following diagram:

$$\begin{array}{c} A(G) \times A(H) \xrightarrow{\times} A(G \times H) \\ (A_{(L}L\rho_{G}), Id_{H}) \\ \downarrow \\ A(L) \times A(H) \xrightarrow{\times} A(L \times H). \end{array}$$

Let $a \in A(G)$ and $b \in A(H)$. By following the diagram, we obtain:

$$(A(_{L}L_{\rho_{G}})(a)) \times b = A(_{L \times H^{p_{1}}}L_{L} \circ_{L} L_{\rho_{G}})(a) \cdot A(_{L \times H^{p_{2}}}H_{H})(b),$$

and we have that:

J. Miguel Calderón León

$A\left(_{L\times H}L\times H_{(\rho,1)}_{G\times H}\right)(a\times b)$

is equal to

$$A\left(_{L\times H}L\times H_{(\rho,1)}_{G\times H}\right)\left(A\left(_{G\times H^{p_{1}}}G_{G}\right)\left(a\right)\cdot A\left(_{G\times H^{p_{2}}}H_{H}\right)\left(b\right)\right)$$

One has

 $_{L\times H^{P_2}}H_H\cong_{G\times H^{(\rho,1)}}L\times H_{L\times H}\circ_{L\times H^{P_2}}H_H.$

We conclude that

 $A\left(_{L\times H}L\times H_{(\rho,1)}_{G\times H}\right)\left(A\left(_{G\times H^{p_{1}}}G_{G}\right)\left(a\right)\cdot A\left(_{G\times H^{p_{2}}}H_{H}\right)\left(b\right)\right)$

is equal to

$$A\left(_{L\times H}L\times H_{(\rho,1)}_{G\times H}\right)(a\times b)$$

is equal to

$$A\left(_{L\times H}L\times H_{(\rho,1)}_{G\times H}\right)\left(A\left(_{G\times H^{p_{1}}}G_{G}\right)\left(a\right)\cdot A\left(_{G\times H^{p_{2}}}H_{H}\right)\left(b\right)\right)$$

One has

 $_{L\times H^{P_2}}H_H\cong_{G\times H^{(\rho,1)}}L\times H_{L\times H}\circ_{L\times H^{P_2}}H_H.$

We conclude that

$$A\left(_{L\times H}L\times H_{(\rho,1)}_{G\times H}\right)\left(A\left(_{G\times H^{p_{1}}}G_{G}\right)\left(a\right)\cdot A\left(_{G\times H^{p_{2}}}H_{H}\right)\left(b\right)\right)$$

is equal to

$$A\left(_{L\times H}L\times H_{(\rho,1)}_{G\times H}\right)(a\times b)$$

is equal to

$$A\left(_{L\times H}L\times H_{(\rho,1)}_{G\times H}\right)\left(A\left(_{G\times H^{p_{1}}}G_{G}\right)\left(a\right)\cdot A\left(_{G\times H^{p_{2}}}H_{H}\right)\left(b\right)\right)$$

One has

$$_{L\times H^{P_2}}H_H\cong_{G\times H^{(\rho,1)}}L\times H_{L\times H}\circ_{L\times H^{P_2}}H_H.$$

We conclude that

$$A\left(_{L\times H}L\times H_{(\rho,1)}_{G\times H}\right)\left(A\left(_{G\times H^{p_{1}}}G_{G}\right)\left(a\right)\cdot A\left(_{G\times H^{p_{2}}}H_{H}\right)\left(b\right)\right)$$

is equal to

$$A\left(_{L\times H}L\times H_{(\rho,1)}_{G\times H}\right)\left(A\left(G\times H^{P_{1}}G_{G}\right)(a)\cdot A\left(G\times H^{(\rho,1)}L\times H_{L\times H}\circ_{L\times H^{P_{2}}}H_{H}\right)(b)\right).$$

Using Frobenius,

 $A\left(_{L\times H}L\times H_{(\rho,1)}_{G\times H}\circ_{G\times H^{p_{1}}}G_{G}\right)(a)\cdot A\left(_{L\times H^{p_{2}}}H_{H}\right)(b)$

note that,

 $L \times H L \times H_{(\rho,1)} = \circ_{G \times H^{p_1}} G_G$ and $L \times H^{p_1} L_L \circ_L L_{\rho_G}$

are isomorphic as $((L \times H), G)$ -biset. Therefore, the above diagram commutes.

$$A\left(_{L\times H}L\times H_{(\rho,1)}_{G\times H}\right)\left(A\left(G\times H^{P_{1}}G_{G}\right)(a)\cdot A\left(G\times H^{(\rho,1)}L\times H_{L\times H}\circ_{L\times H^{P_{2}}}H_{H}\right)(b)\right).$$

Using Frobenius,

$$A\left(_{L\times H}L\times H_{(\rho,1)}_{G\times H}\circ_{G\times H^{P_{1}}}G_{G}\right)(a)\cdot A\left(_{L\times H^{P_{2}}}H_{H}\right)(b),$$

note that,

$$L \times H L \times H_{(\rho,1)} = O_{G \times H^{p_1}} G_G$$
 and $L \times H^{p_1} L_L \circ_L L_{\rho_G}$

are isomorphic as $((L \times H), G)$ -biset. Therefore, the above diagram commutes.

$$A\left(_{L\times H}L\times H_{(\rho,1)}_{G\times H}\right)\left(A\left(G\times H^{P_{1}}G_{G}\right)(a)\cdot A\left(G\times H^{(\rho,1)}L\times H_{L\times H}\circ_{L\times H^{P_{2}}}H_{H}\right)(b)\right).$$

Using Frobenius,

$$A\left(_{L\times H}L\times H_{(\rho,1)}_{G\times H}\circ_{G\times H^{p_{1}}}G_{G}\right)(a)\cdot A\left(_{L\times H^{p_{2}}}H_{H}\right)(b),$$

note that,

$$_{L \times H}L \times H_{(\rho,1)} \underset{G \times H}{\circ} \circ_{G \times H^{p_1}} G_G$$
 and $_{L \times H^{p_1}}L_L \circ_L L_{\rho_G}$

are isomorphic as $((L \times H), G)$ -biset. Therefore, the above diagram commutes.

 $A(_{G}G_{G\times1})(a \times \xi) = A(_{G}G_{G\times1})(A(_{G\times1}G_{G})(a) \cdot A(_{G}I_{1})(1))$ = $A(_{G}G \times 1_{G\times1})(A(_{G\times1}G_{G})(a) \cdot A(_{G}I_{1})(1))$ = $A(_{G}G \times 1_{G\times1} \circ_{G\times1} G_{G})(a) \cdot A(_{G}G \times 1_{G\times1} \circ_{G} 1)$ = $A(_{G}G \times 1_{G})(a) \cdot A(_{G}G \times 1_{1})(\xi)$ = $A(_{G}G_{G})(a) \cdot \xi_{G}$ = a

where ξ_{α} is the multiplicative identity of A(G).

 $A(_{G}G_{G\times 1})(a \times \xi) = A(_{G}G_{G\times 1})(A(_{G\times 1}G_{G})(a) \cdot A(_{G}1_{1})(1))$ = $A(_{G}G \times 1_{G\times 1})(A(_{G\times 1}G_{G})(a) \cdot A(_{G}1_{1})(1))$ = $A(_{G}G \times 1_{G\times 1} \circ_{G\times 1} G_{G})(a) \cdot A(_{G}G \times 1_{G\times 1} \circ_{G} 1_{1})(a)$ = $A(_{G}G \times 1_{G})(a) \cdot A(_{G}G \times 1_{1})(\xi)$ = $A(_{G}G_{G})(a) \cdot \xi_{G}$ = a

where ξ_G is the multiplicative identity of A(G).

$$A(_{G}G_{G\times1})(a \times \xi) = A(_{G}G_{G\times1})(A(_{G\times1}G_{G})(a) \cdot A(_{G}I_{1})(1))$$

= $A(_{G}G \times 1_{G\times1})(A(_{G\times1}G_{G})(a) \cdot A(_{G}I_{1})(1))$
= $A(_{G}G \times 1_{G\times1} \circ_{G\times1} G_{G})(a) \cdot A(_{G}G \times 1_{G\times1} \circ_{G} 1_{1})(1)$
= $A(_{G}G \times 1_{G})(a) \cdot A(_{G}G \times 1_{1})(\xi)$
= $A(_{G}G_{G})(a) \cdot \xi_{G}$
= a

where ξ_G is the multiplicative identity of A(G).

$$A({}_{G}G_{G\times 1})(a \times \xi) = A({}_{G}G_{G\times 1})(A({}_{G\times 1}G_{G})(a) \cdot A({}_{G}1_{1})(1))$$

= $A({}_{G}G \times 1_{G\times 1})(A({}_{G\times 1}G_{G})(a) \cdot A({}_{G}1_{1})(1))$
= $A({}_{G}G \times 1_{G\times 1} \circ_{G\times 1} G_{G})(a) \cdot A({}_{G}G \times 1_{G\times 1} \circ_{G} 1_{1})(1)$
= $A({}_{G}G \times 1_{G})(a) \cdot A({}_{G}G \times 1_{1})(\xi)$
= $A({}_{G}G_{G})(a) \cdot \xi_{G}$
= a

where ξ_G is the multiplicative identity of A(G).

Definition

Let $A \in \mathcal{F}_{D,R}^{\mu}$. A biset functor M is an A-module, if M(H) is a A(H)-module that satisfies the following. Let K and G are groups in \mathcal{D} and $\varphi : K \longrightarrow G$ is a group homomorphism, then:

1 For all $a \in A(G)$ and $m \in M(G)$ one has

 $M(_{K^{\varphi}}G_{G})(a \cdot m) = A(_{K^{\varphi}}G_{G})(a) \cdot M(_{K^{\varphi}}G_{G})(m).$

For the (G, K)-biset G, denoted by ${}_{G}G_{{}^{\varphi}G}$, the morphism $A({}_{G}G_{{}^{\varphi}G})$ satisfies the Frobenius identities for all $a \in A(K)$, $b \in A(G)$, $m \in M(G)$ and $n \in M(K)$,

 $\begin{aligned} A(_{G}G_{\Psi_{K}})(a) \cdot m &= M(_{G}G_{\Psi_{G}})(a \cdot M(_{K^{\Psi}}G_{G})(m)) \\ b \cdot M(_{G}G_{\Psi_{K}})(n) &= M(_{G}G_{\Psi_{G}})(A(_{K^{\Psi}}G_{G})(b) \cdot n) \end{aligned}$

Definition

Let $A \in \mathcal{F}_{D,R}^{\mu}$. A biset functor M is an A-module, if M(H) is a A(H)-module that satisfies the following. Let K and G are groups in \mathcal{D} and $\varphi : K \longrightarrow G$ is a group homomorphism, then:

1 For all $a \in A(G)$ and $m \in M(G)$ one has

 $M(_{K^{\varphi}}G_{G})(a \cdot m) = A(_{K^{\varphi}}G_{G})(a) \cdot M(_{K^{\varphi}}G_{G})(m).$

2 For the (G, K)-biset G, denoted by ${}_{G}G_{\varphi_G}$, the morphism $A({}_{G}G_{\varphi_G})$ satisfies the Frobenius identities for all $a \in A(K)$, $b \in A(G)$, $m \in M(G)$ and $n \in M(K)$,

$$\begin{aligned} \mathsf{A}(_{G}G_{^{\varphi}\mathsf{K}})(a) \cdot m &= \mathsf{M}(_{G}G_{^{\varphi}\mathsf{G}})(a \cdot \mathsf{M}(_{\mathsf{K}^{\varphi}}\mathsf{G}_{G})(m)) \\ b \cdot \mathsf{M}(_{G}G_{^{\varphi}\mathsf{K}})(n) &= \mathsf{M}(_{G}G_{^{\varphi}\mathsf{G}})(\mathsf{A}(_{\mathsf{K}^{\varphi}}\mathsf{G}_{G})(b) \cdot n) \end{aligned}$$

Definition

Let $A \in \mathcal{F}_{D,R}^{\mu}$. A biset functor M is an A-module, if M(H) is a A(H)-module that satisfies the following. Let K and G are groups in \mathcal{D} and $\varphi : K \longrightarrow G$ is a group homomorphism, then:

1 For all $a \in A(G)$ and $m \in M(G)$ one has

 $M(_{K^{\varphi}}G_{G})(a \cdot m) = A(_{K^{\varphi}}G_{G})(a) \cdot M(_{K^{\varphi}}G_{G})(m).$

2 For the (G, K)-biset G, denoted by ${}_{G}G_{\varphi_G}$, the morphism $A({}_{G}G_{\varphi_G})$ satisfies the Frobenius identities for all $a \in A(K)$, $b \in A(G)$, $m \in M(G)$ and $n \in M(K)$,

$$A(_{G}G_{\varphi_{K}})(a) \cdot m = M(_{G}G_{\varphi_{G}})(a \cdot M(_{K^{\varphi}}G_{G})(m))$$

$$b \cdot M(_{G}G_{\varphi_{K}})(n) = M(_{G}G_{\varphi_{G}})(A(_{K^{\varphi}}G_{G})(b) \cdot n)$$

Definition

Let $A \in \mathcal{F}_{D,R}^{\mu}$. A biset functor M is an A-module, if M(H) is a A(H)-module that satisfies the following. Let K and G are groups in \mathcal{D} and $\varphi : K \longrightarrow G$ is a group homomorphism, then:

1 For all $a \in A(G)$ and $m \in M(G)$ one has

$$M(_{K^{\varphi}}G_G)(a \cdot m) = A(_{K^{\varphi}}G_G)(a) \cdot M(_{K^{\varphi}}G_G)(m).$$

2 For the (G, K)-biset G, denoted by ${}_{G}G_{\varphi_G}$, the morphism $A({}_{G}G_{\varphi_G})$ satisfies the Frobenius identities for all $a \in A(K)$, $b \in A(G)$, $m \in M(G)$ and $n \in M(K)$,

$$\begin{aligned} \mathsf{A}(_{G}\mathsf{G}_{\varphi_{K}})(a) \cdot m &= \mathsf{M}(_{G}\mathsf{G}_{\varphi_{G}})(a \cdot \mathsf{M}(_{K^{\varphi}}\mathsf{G}_{G})(m)) \\ b \cdot \mathsf{M}(_{G}\mathsf{G}_{\varphi_{K}})(n) &= \mathsf{M}(_{G}\mathsf{G}_{\varphi_{G}})(\mathsf{A}(_{K^{\varphi}}\mathsf{G}_{G})(b) \cdot n) \end{aligned}$$

Burnside Functor

The Burnside group $B_{\mathcal{D}}(G)$ is the Grothendieck group of the category \mathcal{D} with respect to the disjoint unions of morphisms. The *R*-Mod $RB_{\mathcal{D}}(G) := R \otimes_{\mathbb{Z}} B_{\mathcal{D}}(G)$ is a ring with unity. The multiplication operation is defined as follows:

$[X] \cdot [Y] := [X \times Y]$

where X and Y are G-set. The unity element is the G-set $[\cdot]$

Burnside Functor

The Burnside group $B_{\mathcal{D}}(G)$ is the Grothendieck group of the category \mathcal{D} with respect to the disjoint unions of morphisms. The *R*-Mod $RB_{\mathcal{D}}(G) := R \otimes_{\mathbb{Z}} B_{\mathcal{D}}(G)$ is a ring with unity. The multiplication operation is defined as follows:

 $[X] \cdot [Y] := [X \times Y]$

where X and Y are G-set. The unity element is the G-set $[\cdot]$.

The Fibered Burnside Functor

Let A be a multiplicative abelian group,

Definition

Let X be a set, we call X an A-fibered G-set if X is an $A \times G$ -set such that the action of A is free with A-orbits are finitely.

We denote by $_{G}set^{A}$ the category of A-fibered G-sets. Here the morphisms are given by A \times G-equivariant functions. The operation of disjoint union of sets induces a coproduct on $_{G}set^{A}$

• $B^A(G)$ the Grothendieck group of this category with respect to disjoint unions.

• Let be a (G, H)-biset. we define the map

$$RB^{A}(U) : RB^{A}(H) \longrightarrow RB^{A}(G)$$
$$[X] \longmapsto [U \otimes_{AH} X]$$

where $[U \otimes_{AH} X]$ are the elements of $[U \circ_H X]$ such that the action of A is free

The group $RB^{A}(G)$ has a structure ring via

 $[X] \cdot [Y] := [(X \otimes_A Y)]$

where X, Y are objects of $_{G}set^{A}$.

• Let be a (G, H)-biset. we define the map

$$RB^{A}(U) : RB^{A}(H) \longrightarrow RB^{A}(G)$$
$$[X] \longmapsto [U \otimes_{AH} X]$$

where $[U \otimes_{AH} X]$ are the elements of $[U \circ_{H} X]$ such that the action of A is free

The group $RB^{A}(G)$ has a structure ring via :

```
[X] \cdot [Y] := [(X \otimes_A Y)]
```

where X, Y are objects of $_Gset^A$.

Definition

Let G finite group. The category of morphisms of G-sets. to be denoted G-Mor, consist

- Obj(G-Mor)= the morphisms of G-sets.
- Let $f : A \longrightarrow B$ and $g : A' \longrightarrow B'$ be morphisms of G-sets.

 $Hom_{G-Mor}(A \xrightarrow{f} B, A' \xrightarrow{g} B') := \{(h, k) \mid h, k \in (G-Mor)_{o} \text{ and } (1)\}$

The composition is the composition of functions

• (1, 1) is the identity of $A \xrightarrow{J} B$.

Definition

Let G finite group. The category of morphisms of G-sets. to be denoted G-Mor, consist

- Obj(G-Mor)= the morphisms of G-sets.
- Let $f : A \longrightarrow B$ and $g : A' \longrightarrow B'$ be morphisms of G-sets.

$$Hom_{G-Mor}(A \xrightarrow{f} B, A' \xrightarrow{g} B') := \{(h, k) \mid h, k \in (G-Mor)_{o} \text{ and } (1)\}$$

(1)

• The composition is the composition of functions

• (1, 1) is the identity of A
$$\xrightarrow{f} B$$
.

Definition

Let G finite group. The category of morphisms of G-sets. to be denoted G-Mor, consist

- Obj(G-Mor)= the morphisms of G-sets.
- Let $f : A \longrightarrow B$ and $g : A' \longrightarrow B'$ be morphisms of G-sets.

$$Hom_{G-Mor}(A \xrightarrow{f} B, A' \xrightarrow{g} B') := \{(h, k) \mid h, k \in (G-Mor)_{o} \text{ and } (1)\}$$

(1)

- The composition is the composition of functions
- (1, 1) is the identity of $A \xrightarrow{f} B$.

Definition

Let G finite group. The category of morphisms of G-sets. to be denoted G-Mor, consist

- Obj(G-Mor)= the morphisms of G-sets.
- Let $f : A \longrightarrow B$ and $g : A' \longrightarrow B'$ be morphisms of G-sets.

$$Hom_{G-Mor}(A \xrightarrow{f} B, A' \xrightarrow{g} B') := \{(h, k) \mid h, k \in (G-Mor)_{o} \text{ and } (1)\}$$

(1)

• The composition is the composition of functions

• (1, 1) is the identity of
$$A \xrightarrow{J} B$$
.

Let $A \xrightarrow{f} B$ and $A' \xrightarrow{g} B'$ elements of G-Mor. We define the disjoint union of these morphisms as follows:

$$A \sqcup A' \xrightarrow{f \sqcup f'} B \sqcup B$$
$$x \longmapsto f \sqcup f'(x)$$

where

$$f \sqcup f'(x) = \begin{cases} f(x) \text{ if } x \in A \\ f'(x) \text{ if } x \in A'. \end{cases}$$

 \sqcup is a cooproduct of G-Mor.

$$\begin{split} \Xi(U) &: \Xi(G) \longrightarrow \Xi(H) \\ & (X \xrightarrow{f} Y) \longmapsto (U \times_G X \xrightarrow{U \times_G f} U \times_G Y), \end{split}$$

I. Miguer caruer

Let $A \xrightarrow{f} B$ and $A' \xrightarrow{g} B'$ elements of G-Mor. We define the disjoint union of these morphisms as follows:

$$A \sqcup A' \xrightarrow{f \sqcup f'} B \sqcup B$$
$$x \longmapsto f \sqcup f'(x)$$

where

$$f \sqcup f'(x) = \begin{cases} f(x) \text{ if } x \in A \\ f'(x) \text{ if } x \in A'. \end{cases}$$

 \sqcup is a cooproduct of G-Mor.

The slice Burnside group of G, denotade by $\Xi(G)$, is the Grothendieck group of the category G-Mor with respect to disjoint unions of morphisms.

Definition

Let U be a (G, H)-biset, we define the map

$$\begin{split} \Xi(U) &: \Xi(G) \longrightarrow \Xi(H) \\ (X \xrightarrow{f} Y) &\longmapsto (U \times_G X \xrightarrow{U \times_G f} U \times_G Y), \end{split}$$

where $U \times_G X$ and $U \times_G Y$ have the natural action of H-sets coming from the action of H on II I. Migue

Let $X \xrightarrow{f} Y$ and $Z \xrightarrow{g} W$ be elements of G-Mor. We define

$$\begin{array}{l} X \times Z \xrightarrow{f \times g} Y \times W \\ (x, y) \longmapsto (f(x), g(x)) \end{array}$$

The group $\Xi(G)$ has struture of ring via

$$[X \xrightarrow{f} Y] \cdot [Z \xrightarrow{g} W] = [X \times Z \xrightarrow{f \times g} Y \times W$$

The element idenity is $\{\cdot\} \xrightarrow{1} \{\cdot\}$.

(2) (3)

The shifted Functor

Let K be a finite group. The Green biset functor A over $R\mathcal{D}$ can be shifted by K. This gives a new Green biset functor, A_K , defined for a finite group G by

 $A_{K}(G) = A(G \times K).$

For finite groups G and H and a finite (H, G)-biset U, the map

$$A_{\mathcal{K}}(U) : A_{\mathcal{K}}(G) \longrightarrow A_{\mathcal{K}}(H)$$

is the map $A(U \times K)$, where $U \times K$ is viewed as a $(H \times K, G \times K)$ -biset in the obvious way.

Moreover, for a finite group G, $A_K(G) = A(G \times K)$ is a R-algebra whit unity.

- [1] Serge Bouc. Bisets as categories and tensor product of induced bimodules. Applied Categorical Structures, 18(5):517–521, 2010.
- [2] Nadia Romero. Funtores de Mackey. Tesis de doctorado, UNAM, 2011.

