1. Find the roots of the following polynomials:

a) $x^2 - 4$	b) $x^2 - 5x + 6$	c) $3x^2 - 27$
d) $2x^2 - 16$	e) $x^2 + 3x + 2$	f) $x^2 - 2x - 8$
g) $x^2 + 2x + 1$	h) $2x^2 + 8x + 6$	i) $x^3 - 6x^2 + 11x - 6$
j) $x^3 - 5x^2 + 2x + 8$		

2. Solve the following equations:

a) $x^3 - 2x^2 - 11x + 12 = 0$	b) $ 3x - 2 - 5 = 0$	c) $\sqrt{x^2 + 5} = 3x - 1$
d) $\sqrt{x+4} + \sqrt{x-1} = 3$	e) $x^4 - 5x^2 + 4 = 0$	$\mathbf{f)} 2x^2 - 7 = 10$
$\mathbf{g)} \ \frac{\sqrt{x}}{2} - \frac{3}{4} = \frac{x - 1}{2}$	h) $\sqrt{\frac{x}{2}} + \sqrt{\frac{x+1}{3}} = 2$	

- 3. Sketch the following sets of reals:
 - (a) The set A represented by the union of intervals (-1,2) and [4,6],
 - (b) the set B represented by the intersection of intervals [-3, 1] and (-2, 5),
 - (c) the set C represented by the union of intervals (-3,2) and $(4,\infty)$,
 - (d) the set D represented by the intersection of intervals $(-\infty, -1)$ and (0, 5],
 - (e) the set E represented by the union of the interval [1,4] and the set of rational numbers in the open interval (4,6).
- 4. Find all $x \in \mathbb{R}$ satisfying the following inequalities:

a)
$$(x-3)(2x+5) > 0$$
 d) $\frac{x-2}{x+3} < 0$
b) $3x^2 - 4x < 5x - 2$ e) $\sqrt{2x-1} > 3$
c) $-2x+1 > 3$ f) $\frac{x^2-9}{x-3} \le 0$
 $5x-7 < 2x+4$