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Abstract
The main topic of this note is to explain the motivation behind Kura-

towski’s theorem for planar graphs.

1 Introduction.

Planar graphs are important in areas like network design, circuit layouts, and
map-making, where minimizing crossings can make things simpler and easier
to understand. By studying them, we gain insight not just into how to draw
graphs more clearly, but also into deeper ideas in topology, graph theory, and
real-world problem solving.

Definition 1.1. A graph ⟨G,E⟩ is planar if it can be embedded into the plane
in such a way that its edges intersect only at their endpoints.

Graphs can have different visual representations depending on how their
vertices and edges are arranged in the plane. A graph that appears non-planar in
one drawing may actually be planar if redrawn without any edge crossings. This
means that planarity is a property of the graph itself—not just of a particular
drawing—so it’s important to consider whether a graph can be drawn without
crossings, rather than relying solely on its appearance. For example, consider
K4, the complete graph with 4 vertices, in the following two presentations.
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Figure 1: Two different presentation of K4.

In Figure 1, two representations of the same graph are shown. Note that in
the one on the left, edges only intersect at their respective endpoints, and the
one on the right, the edge AC intersects the edge BD exactly in the middle.
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2 Euler’s formula.

Not all graphs are planar; one of the earliest proofs that tests the planarity of
a graph is Euler’s formula for planar graphs.

Theorem 2.1 (Euler’s formula for planar graphs). Let ⟨G,E⟩ be a planar graph,
let v the number of vertices, e the number of edges and f be the number of faces,
including the exterior face, then

v − e+ f = 2.

Consider the graph K5 –the complete graph with 5 vertices–. Using Euler’s
formula, we can easily show that K5 is not planar.

Theorem 2.2. The complete graph with 5 vertices is not planar.

Proof. Notice that, for K5, the number of vertices v is and the number of edges
e is 10. If K5 was to be planar, then, by Euler’s formula, such embedding must
have f = 2 − v + e = 7 faces. Now, notice that every face must be bounded
by at least 3 edges, and each edge borders at most 2 faces. Therefore 2e ≥ 3f .
However this means that 20 ≥ 21, which is a contradiction.
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Figure 2: The complete graph with 5 vertices, K5.

The reader may find a similar proof for K3,3, the complete bipartite graph
in which each piece has 3 vertices. It turns out that these two graphs are a basis
for finite non-planar graphs.

3 Kuratowski’s theorem

Kuratowski’s theorem is a mathematical forbidden graph characterization of
planar graphs, named after Kazimierz Kuratowski.

Theorem 3.1 (Kuratowski’s theorem). A finite graph G is planar if and only
if it is not possible to subdivide the edges of K5 or K3,3, and then possibly add
additional edges and vertices, to form a graph isomorphic to G.
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Figure 3: Petersen graph

Kazimierz Kuratowski published his theorem in 1930 (see [1]). The theorem
was independently proved by Orrin Frink and Paul Smith, also in 1930, but
their proof was never published. The special case of cubic planar graphs was
also independently proved by Karl Menger in 1930. Since then, several new
proofs of the theorem have been discovered.

In the Soviet Union, Kuratowski’s theorem was known as either the Pontrya-
gin–Kuratowski theorem or the Kuratowski–Pontryagin theorem, as the theorem
was reportedly proved independently by Lev Pontryagin around 1927. However,
as Pontryagin never published his proof, this usage has not spread to other
places.
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