Table of derivatives

Your name

March 13, 2025

The $\mathit{derivative}$ of a function $f:\mathbb{R}\to\mathbb{R}$ is defined as

$\frac{df}{dr}$	lim	$\frac{f(x_0+h)-f(x_0)}{h}.$
$\frac{dx}{dx}(x_0) = \prod_{h=1}^{n}$	$h \rightarrow 0$	h.

The derivative of linear combinations.				
If f, g are functions and $c \in \mathbb{R}$ then $\frac{df + c \cdot g}{dx} = \frac{df}{dx} + c \cdot \frac{dg}{dx}$				
The derivative of a product.				
$\frac{\mathrm{If}\ f,g\ \mathrm{are\ functions}}{\frac{df\cdot g}{dx}} = g\cdot\frac{df}{dx} + f\cdot\frac{dg}{dx}$				
The chain rule.				
If f, g are functions $\frac{dg(f)}{dx} = \frac{dg}{df} \cdot \frac{df}{dx}$				
Derivatives of common functions.				
$\frac{dx^k}{dx} = kx^{k-1}, k \in \mathbb{R}$	$\frac{da^x}{dx} = a^x \ln_a(x)$	$\frac{d\ln_a(x)}{dx} = \frac{1}{\ln(a) \cdot x}$		
$\frac{d\sin(x)}{dx} = \cos(x)$	$\frac{d\cos(x)}{dx} = -\sin(x)$	$\frac{d\tan}{dx} = \sec(x)^2$		
$\left \frac{d \cot(x)}{dx} = -\csc(x)^2 \right $	$\frac{d \sec(x)}{dx} = \sec(x) \cdot \tan(x)$	$\frac{d \csc}{dx} = -\csc(x) \cdot \cot(x)$		
$\left \frac{d \arcsin(x)}{dx} = \frac{1}{\sqrt{1 - x^2}} \right $	$\frac{d \arccos(x)}{dx} = \frac{-1}{\sqrt{1-x^2}}$	$\frac{d\arctan}{dx} = \frac{1}{1+x^2}$		
$\boxed{ \begin{array}{c} \frac{dx}{dx} \\ \frac{d \operatorname{arcsin}(x)}{dx} = \frac{1}{\sqrt{1 - x^2}} \\ \frac{d \operatorname{arccot}(x)}{dx} = \frac{-1}{1 + x^2} \end{array} }$	$\frac{dx}{dx} = \frac{\sqrt{1-x^2}}{ x \sqrt{1-x^2}}$	$\frac{dax}{dx} = \frac{-1}{ x \sqrt{1-x^2}}$		

Recall that the absolute value function is defined in the following way

$$|x| = \begin{cases} x & \text{if } x > 0\\ -x & \text{otherwise} \end{cases}$$